千家信息网

如何使用R语言绘制散点图结合边际分布图

发表于:2025-01-17 作者:千家信息网编辑
千家信息网最后更新 2025年01月17日,这篇文章主要为大家展示了"如何使用R语言绘制散点图结合边际分布图",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"如何使用R语言绘制散点图结合边际分布图"这篇
千家信息网最后更新 2025年01月17日如何使用R语言绘制散点图结合边际分布图

这篇文章主要为大家展示了"如何使用R语言绘制散点图结合边际分布图",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"如何使用R语言绘制散点图结合边际分布图"这篇文章吧。

    主要使用ggExtra结合ggplot2两个R包进行绘制。(胜在简洁方便)使用cowplotggpubr进行绘制。(胜在灵活且美观)

    下面的绘图我们均以iris数据集为例。

    1. 使用ggExtra结合ggplot2

    1)传统散点图

    # librarylibrary(ggplot2)library(ggExtra)# classic plotp <- ggplot(iris) +  geom_point(aes(x = Sepal.Length, y = Sepal.Width, color = Species), alpha = 0.6, shape = 16) +  # alpha 调整点的透明度;shape 调整点的形状  theme_bw() +  theme(legend.position = "bottom") + # 图例置于底部  labs(x = "Sepal Length", y = "Sepal Width") # 添加x,y轴的名称p

    下面我们一行代码添加边际分布(分别以密度曲线与直方图的形式来展现):

    2)密度函数

    # marginal plot: densityggMarginal(p, type = "density", groupColour = TRUE, groupFill = TRUE)

    3)直方图

    # marginal plot: histogramggMarginal(p, type = "histogram", groupColour = TRUE, groupFill = TRUE)

    4)箱线图(宽窄的显示会有些问题)

    # marginal plot: boxplotggMarginal(p, type = "boxplot", groupColour = TRUE, groupFill = TRUE)

    5)小提琴图(会有重叠,不建议使用)

    # marginal plot: violinggMarginal(p, type = "violin", groupColour = TRUE, groupFill = TRUE)

    6)密度函数与直方图同时展现

    # marginal plot: densigramggMarginal(p, type = "densigram", groupColour = TRUE, groupFill = TRUE)

    2. 使用cowplot与ggpubr

    1)重绘另一种散点图

    # Scatter plot colored by groups ("Species")sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",                color = "Species", palette = "jco",                size = 3, alpha = 0.6) +  border() +  theme(legend.position = "bottom")sp

    2)有缝拼接

    ① 密度函数

    library(cowplot)# Marginal density plot of x (top panel) and y (right panel)xplot <- ggdensity(iris, "Sepal.Length", fill = "Species",                   palette = "jco")yplot <- ggdensity(iris, "Sepal.Width", fill = "Species",                    palette = "jco") +  rotate()# Cleaning the plotssp <- sp + rremove("legend")yplot <- yplot + clean_theme() + rremove("legend")xplot <- xplot + clean_theme() + rremove("legend")# Arranging the plot using cowplotplot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv",           rel_widths = c(2, 1), rel_heights = c(1, 2))

    ② 未被压缩的箱线图

    # Marginal boxplot of x (top panel) and y (right panel)xplot <- ggboxplot(iris, x = "Species", y = "Sepal.Length",                    color = "Species", fill = "Species", palette = "jco",                   alpha = 0.5, ggtheme = theme_bw())+  rotate()yplot <- ggboxplot(iris, x = "Species", y = "Sepal.Width",                   color = "Species", fill = "Species", palette = "jco",                   alpha = 0.5, ggtheme = theme_bw())# Cleaning the plotssp <- sp + rremove("legend")yplot <- yplot + clean_theme() + rremove("legend")xplot <- xplot + clean_theme() + rremove("legend")# Arranging the plot using cowplotplot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv",           rel_widths = c(2, 1), rel_heights = c(1, 2))

    3)无缝拼接

    # Main plotpmain <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +  geom_point() +  color_palette("jco")# Marginal densities along x axisxdens <- axis_canvas(pmain, axis = "x") +  geom_density(data = iris, aes(x = Sepal.Length, fill = Species),               alpha = 0.7, size = 0.2) +  fill_palette("jco")# Marginal densities along y axis# Need to set coord_flip = TRUE, if you plan to use coord_flip()ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE) +  geom_density(data = iris, aes(x = Sepal.Width, fill = Species),               alpha = 0.7, size = 0.2) +  coord_flip() +  fill_palette("jco")p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"), position = "right")ggdraw(p2)

    以上是"如何使用R语言绘制散点图结合边际分布图"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!

    0