千家信息网

pandas从入门到上楼

发表于:2025-01-23 作者:千家信息网编辑
千家信息网最后更新 2025年01月23日,数据对象pandas主要有两种数据对象SeriesDataFrame注: 后面代码使用pandas版本0.20.1,通过import pandas as pd引入SeriesSeries是一种带有索引
千家信息网最后更新 2025年01月23日pandas从入门到上楼

数据对象

pandas主要有两种数据对象

  1. Series
  2. DataFrame

    注: 后面代码使用pandas版本0.20.1,通过import pandas as pd引入

Series

Series是一种带有索引的序列对象

创建方式

简单创建如下

# 通过传入一个序列给pd.Series初始化一个Series对象, 比如lists1 = pd.Series(list("1234"))print(s1)0    11    22    33    4dtype: object

DataFrame

类似与数据库table有行列的数据对象

创建方式如下
# 通过传入一个numpy的二维数组或者dict对象给pd.DataFrame初始化一个DataFrame对象# 通过numpy二维数组import numpy as npdf1 = pd.DataFrame(np.random.randn(6,4))print(df1)    0   1   2   30   -0.646340   -1.249943   0.393323    -1.5618731   0.371630    0.069426    1.693097    0.9074192   -0.328575   -0.256765   0.693798    -0.7873433   1.875764    -0.416275   -1.028718   0.1582594   1.644791    -1.321506   -0.337425   0.8206895   0.006391    -1.447894   0.506203    0.977295# 通过dict字典df2 = pd.DataFrame({ 'A' : 1.,                     'B' : pd.Timestamp('20130102'),                     'C' : pd.Series(1,index=list(range(4)),dtype='float32'),                     'D' : np.array([3] * 4,dtype='int32'),                     'E' : pd.Categorical(["test","train","test","train"]),                     'F' : 'foo' })print(df2)    A   B   C   D   E   F0   1.0 2013-01-02  1.0 3   test    foo1   1.0 2013-01-02  1.0 3   train   foo2   1.0 2013-01-02  1.0 3   test    foo3   1.0 2013-01-02  1.0 3   train   foo

索引

不管是Series对象还是DataFrame对象都有一个对对象相对应的索引, Series的索引类似于每个元素, DataFrame的索引对应着每一行

查看

在创建对象的时候,每个对象都会初始化一个起始值为0,自增的索引列表, DataFrame同理

# 打印对象的时候,第一列就是索引print(s1)0    11    22    33    4dtype: object# 或者只查看索引, DataFrame同理print(s1.index)

增删查改

这里的增删查改主要基于DataFrame对象

为了有足够数据用于展示,这里选择tushare的数据

tushare安装

pip install tushare

创建数据对象如下

import tushare as tsdf = ts.get_k_data("000001")

DataFrame 行列,axis 图解

查询

查看每列的数据类型

# 查看df数据类型df.dtypesdate       objectopen      float64close     float64high      float64low       float64volume    float64code       objectdtype: object

查看指定指定数量的行

head函数默认查看前5行,tail函数默认查看后5行,可以传递指定的数值用于查看指定行数

查看前5行df.head()date    open    close   high    low volume  code0   2015-12-23  9.927   9.935   10.174  9.871   1039018.0   0000011   2015-12-24  9.919   9.823   9.998   9.744   640229.0    0000012   2015-12-25  9.855   9.879   9.927   9.815   399845.0    0000013   2015-12-28  9.895   9.537   9.919   9.537   822408.0    0000014   2015-12-29  9.545   9.624   9.632   9.529   619802.0    000001# 查看后5行df.tail()date    open    close   high    low volume  code636 2018-08-01  9.42    9.15    9.50    9.11    814081.0    000001637 2018-08-02  9.13    8.94    9.15    8.88    931401.0    000001638 2018-08-03  8.93    8.91    9.10    8.91    476546.0    000001639 2018-08-06  8.94    8.94    9.11    8.89    554010.0    000001640 2018-08-07  8.96    9.17    9.17    8.88    690423.0    000001# 查看前10行df.head(10)date    open    close   high    low volume  code0   2015-12-23  9.927   9.935   10.174  9.871   1039018.0   0000011   2015-12-24  9.919   9.823   9.998   9.744   640229.0    0000012   2015-12-25  9.855   9.879   9.927   9.815   399845.0    0000013   2015-12-28  9.895   9.537   9.919   9.537   822408.0    0000014   2015-12-29  9.545   9.624   9.632   9.529   619802.0    0000015   2015-12-30  9.624   9.632   9.640   9.513   532667.0    0000016   2015-12-31  9.632   9.545   9.656   9.537   491258.0    0000017   2016-01-04  9.553   8.995   9.577   8.940   563497.0    0000018   2016-01-05  8.972   9.075   9.210   8.876   663269.0    0000019   2016-01-06  9.091   9.179   9.202   9.067   515706.0    000001

查看某一行或多行,某一列或多列

# 查看第一行df[0:1]    date    open    close   high    low volume  code0   2015-12-23  9.927   9.935   10.174  9.871   1039018.0   000001# 查看 10到20行df[10:21]    date    open    close   high    low volume  code10  2016-01-07  9.083   8.709   9.083   8.685   174761.0    00000111  2016-01-08  8.924   8.852   8.987   8.677   747527.0    00000112  2016-01-11  8.757   8.566   8.820   8.502   732013.0    00000113  2016-01-12  8.621   8.605   8.685   8.470   561642.0    00000114  2016-01-13  8.669   8.526   8.709   8.518   391709.0    00000115  2016-01-14  8.430   8.574   8.597   8.343   666314.0    00000116  2016-01-15  8.486   8.327   8.597   8.295   448202.0    00000117  2016-01-18  8.231   8.287   8.406   8.199   421040.0    00000118  2016-01-19  8.319   8.526   8.582   8.287   501109.0    00000119  2016-01-20  8.518   8.390   8.597   8.311   603752.0    00000120  2016-01-21  8.343   8.215   8.558   8.215   606145.0    000001# 查看看Date列前5个数据df["date"].head() # 或者df.date.head()0    2015-12-231    2015-12-242    2015-12-253    2015-12-284    2015-12-29Name: date, dtype: object# 查看看Date列,code列, open列前5个数据df[["date","code", "open"]].head()    date    code    open0   2015-12-23  000001  9.9271   2015-12-24  000001  9.9192   2015-12-25  000001  9.8553   2015-12-28  000001  9.8954   2015-12-29  000001  9.545

使用行列组合条件查询

# 查看date, code列的第10行df.loc[10, ["date", "code"]]date    2016-01-07code        000001Name: 10, dtype: object# 查看date, code列的第10行到20行df.loc[10:20, ["date", "code"]]    date    code10  2016-01-07  00000111  2016-01-08  00000112  2016-01-11  00000113  2016-01-12  00000114  2016-01-13  00000115  2016-01-14  00000116  2016-01-15  00000117  2016-01-18  00000118  2016-01-19  00000119  2016-01-20  00000120  2016-01-21  000001# 查看第一行,open列的数据df.loc[0, "open"]9.9269999999999996

通过==位置==查询

值得注意的是上面的索引值就是特定的位置

# 查看第1行()df.iloc[0]date      2015-12-24open           9.919close          9.823high           9.998low            9.744volume        640229code          000001Name: 0, dtype: object# 查看最后一行df.iloc[-1]date      2018-08-08open            9.16close           9.12high            9.16low              9.1volume         29985code          000001Name: 640, dtype: object# 查看第一列,前5个数值df.iloc[:,0].head()0    2015-12-241    2015-12-252    2015-12-283    2015-12-294    2015-12-30Name: date, dtype: object# 查看前2到4行,第1,3列df.iloc[2:4,[0,2]]date    close2   2015-12-28  9.5373   2015-12-29  9.624

通过条件筛选

查看open列大于10的前5行df[df.open > 10].head()    date    open    close   high    low volume  code378 2017-07-14  10.483  10.570  10.609  10.337  1722570.0   000001379 2017-07-17  10.619  10.483  10.987  10.396  3273123.0   000001380 2017-07-18  10.425  10.716  10.803  10.299  2349431.0   000001381 2017-07-19  10.657  10.754  10.851  10.551  1933075.0   000001382 2017-07-20  10.745  10.638  10.880  10.580  1537338.0   000001# 查看open列大于10且open列小于10.6的前五行df[(df.open > 10) & (df.open < 10.6)].head()    date    open    close   high    low volume  code378 2017-07-14  10.483  10.570  10.609  10.337  1722570.0   000001380 2017-07-18  10.425  10.716  10.803  10.299  2349431.0   000001387 2017-07-27  10.550  10.422  10.599  10.363  1194490.0   000001388 2017-07-28  10.441  10.569  10.638  10.412  819195.0    000001390 2017-08-01  10.471  10.865  10.904  10.432  2035709.0   000001# 查看open列大于10或open列小于10.6的前五行df[(df.open > 10) | (df.open < 10.6)].head()    date    open    close   high    low volume  code0   2015-12-24  9.919   9.823   9.998   9.744   640229.0    0000011   2015-12-25  9.855   9.879   9.927   9.815   399845.0    0000012   2015-12-28  9.895   9.537   9.919   9.537   822408.0    0000013   2015-12-29  9.545   9.624   9.632   9.529   619802.0    0000014   2015-12-30  9.624   9.632   9.640   9.513   532667.0    000001

增加

在前面已经简单的说明Series, DataFrame的创建,这里说一些常用有用的创建方式

# 创建2018-08-08到2018-08-15的时间序列,默认时间间隔为Days2 = pd.date_range("20180808", periods=7)print(s2)DatetimeIndex(['2018-08-08', '2018-08-09', '2018-08-10', '2018-08-11',               '2018-08-12', '2018-08-13', '2018-08-14'],              dtype='datetime64[ns]', freq='D')# 指定2018-08-08 00:00 到2018-08-09 00:00 时间间隔为小时# freq参数可使用参数, 参考: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliasess3 = pd.date_range("20180808", "20180809", freq="H")print(s2)DatetimeIndex(['2018-08-08 00:00:00', '2018-08-08 01:00:00',               '2018-08-08 02:00:00', '2018-08-08 03:00:00',               '2018-08-08 04:00:00', '2018-08-08 05:00:00',               '2018-08-08 06:00:00', '2018-08-08 07:00:00',               '2018-08-08 08:00:00', '2018-08-08 09:00:00',               '2018-08-08 10:00:00', '2018-08-08 11:00:00',               '2018-08-08 12:00:00', '2018-08-08 13:00:00',               '2018-08-08 14:00:00', '2018-08-08 15:00:00',               '2018-08-08 16:00:00', '2018-08-08 17:00:00',               '2018-08-08 18:00:00', '2018-08-08 19:00:00',               '2018-08-08 20:00:00', '2018-08-08 21:00:00',               '2018-08-08 22:00:00', '2018-08-08 23:00:00',               '2018-08-09 00:00:00'],              dtype='datetime64[ns]', freq='H')# 通过已有序列创建时间序列s4 = pd.to_datetime(df.date.head())print(s4)0   2015-12-241   2015-12-252   2015-12-283   2015-12-294   2015-12-30Name: date, dtype: datetime64[ns]

修改

# 将df 的索引修改为date列的数据,并且将类型转换为datetime类型df.index = pd.to_datetime(df.date)df.head()    date    open    close   high    low volume  codedate                            2015-12-24  2015-12-24  9.919   9.823   9.998   9.744   640229.0    0000012015-12-25  2015-12-25  9.855   9.879   9.927   9.815   399845.0    0000012015-12-28  2015-12-28  9.895   9.537   9.919   9.537   822408.0    0000012015-12-29  2015-12-29  9.545   9.624   9.632   9.529   619802.0    0000012015-12-30  2015-12-30  9.624   9.632   9.640   9.513   532667.0    000001# 修改列的字段df.columns = ["Date", "Open","Close","High","Low","Volume","Code"]print(df.head())                  Date   Open  Close   High    Low    Volume    Codedate                                                                2015-12-24  2015-12-24  9.919  9.823  9.998  9.744  640229.0  0000012015-12-25  2015-12-25  9.855  9.879  9.927  9.815  399845.0  0000012015-12-28  2015-12-28  9.895  9.537  9.919  9.537  822408.0  0000012015-12-29  2015-12-29  9.545  9.624  9.632  9.529  619802.0  0000012015-12-30  2015-12-30  9.624  9.632  9.640  9.513  532667.0  000001# 将Open列每个数值加1, apply方法并不直接修改源数据,所以需要将新值复制给dfdf.Open = df.Open.apply(lambda x: x+1)df.head()    Date    Open    Close   High    Low Volume  Codedate                            2015-12-24  2015-12-24  10.919  9.823   9.998   9.744   640229.0    0000012015-12-25  2015-12-25  10.855  9.879   9.927   9.815   399845.0    0000012015-12-28  2015-12-28  10.895  9.537   9.919   9.537   822408.0    0000012015-12-29  2015-12-29  10.545  9.624   9.632   9.529   619802.0    0000012015-12-30  2015-12-30  10.624  9.632   9.640   9.513   532667.0    000001# 将Open,Close列都数值上加1,如果多列,apply接收的对象是整个列df[["Open", "Close"]].head().apply(lambda x: x.apply(lambda x: x+1))            Open    Closedate        2015-12-24  11.919  10.8232015-12-25  11.855  10.8792015-12-28  11.895  10.5372015-12-29  11.545  10.6242015-12-30  11.624  10.632

删除

通过drop方法drop指定的行或者列

注意: drop方法并不直接修改源数据,如果需要使源dataframe对象被修改,需要传入inplace=True

通过之前的axis图解,知道行的值(或者说label)在axis=0,列的值(或者说label)在axis=1

# 删除指定列,删除Open列df.drop("Open", axis=1).head() #或者df.drop(df.columns[1])    Date    Close   High    Low Volume  Codedate                        2015-12-24  2015-12-24  9.823   9.998   9.744   640229.0    0000012015-12-25  2015-12-25  9.879   9.927   9.815   399845.0    0000012015-12-28  2015-12-28  9.537   9.919   9.537   822408.0    0000012015-12-29  2015-12-29  9.624   9.632   9.529   619802.0    0000012015-12-30  2015-12-30  9.632   9.640   9.513   532667.0    000001# 删除第1,3列. 即Open,High列df.drop(df.columns[[1,3]], axis=1).head() # 或df.drop(["Open", "High], axis=1).head()        Date    Close   Low Volume  Codedate                    2015-12-24  2015-12-24  9.823   9.744   640229.0    0000012015-12-25  2015-12-25  9.879   9.815   399845.0    0000012015-12-28  2015-12-28  9.537   9.537   822408.0    0000012015-12-29  2015-12-29  9.624   9.529   619802.0    0000012015-12-30  2015-12-30  9.632   9.513   532667.0    000001

pandas常用参数

数值显示格式

当数值很大的时候pandas默认会使用科学计数法

# float数据类型以{:.4f}格式显示,即显示完整数据且保留后四位pd.options.display.float_format = '{:.4f}'.format

常用函数

统计

# descibe方法会计算每列数据对象是数值的count, mean, std, min, max, 以及一定比率的值df.describe()        Open    Close   High    Low Volumecount   641.0000    641.0000    641.0000    641.0000    641.0000mean    10.7862 9.7927  9.8942  9.6863  833968.6162std 1.5962  1.6021  1.6620  1.5424  607731.6934min 8.6580  7.6100  7.7770  7.4990  153901.000025% 9.7080  8.7180  8.7760  8.6500  418387.000050% 10.0770 9.0960  9.1450  8.9990  627656.000075% 11.8550 10.8350 10.9920 10.7270 1039297.0000max 15.9090 14.8600 14.9980 14.4470 4262825.0000# 单独统计Open列的平均值df.Open.mean()10.786248049922001# 查看居于95%的值, 默认线性拟合df.Open.quantile(0.95)14.187# 查看Open列每个值出现的次数df.Open.value_counts().head()9.8050    129.8630    109.8440    109.8730    109.8830     8Name: Open, dtype: int64

缺失值处理

删除或者填充缺失值

# 删除含有NaN的任意行df.dropna(how='any')# 删除含有NaN的任意列df.dropna(how='any', axis=1)# 将NaN的值改为5df.fillna(value=5)

排序

按行或者列排序, 默认也不修改源数据

# 按列排序df.sort_index(axis=1).head()    Close   Code    Date    High    Low Open    Volumedate                            2015-12-24  9.8230  000001  2015-12-24  9.9980  9.7440  10.9190 640229.00002015-12-25  1.0000  000001  2015-12-25  1.0000  9.8150  10.8550 399845.00002015-12-28  1.0000  000001  2015-12-28  1.0000  9.5370  10.8950 822408.00002015-12-29  9.6240  000001  2015-12-29  9.6320  9.5290  10.5450 619802.00002015-12-30  9.6320  000001  2015-12-30  9.6400  9.5130  10.6240 532667.0000# 按行排序,不递增df.sort_index(ascending=False).head()        Date    Open    Close   High    Low Volume  Codedate                            2018-08-08  2018-08-08  10.1600 9.1100  9.1600  9.0900  153901.0000 0000012018-08-07  2018-08-07  9.9600  9.1700  9.1700  8.8800  690423.0000 0000012018-08-06  2018-08-06  9.9400  8.9400  9.1100  8.8900  554010.0000 0000012018-08-03  2018-08-03  9.9300  8.9100  9.1000  8.9100  476546.0000 0000012018-08-02  2018-08-02  10.1300 8.9400  9.1500  8.8800  931401.0000 000001

安装某一列的值排序

# 按照Open列的值从小到大排序df.sort_values(by="Open")        Date    Open    Close   High    Low Volume  Codedate                            2016-03-01  2016-03-01  8.6580  7.7220  7.7770  7.6260  377910.0000 0000012016-02-15  2016-02-15  8.6900  7.7930  7.8410  7.6820  278499.0000 0000012016-01-29  2016-01-29  8.7540  7.9610  8.0240  7.7140  544435.0000 0000012016-03-02  2016-03-02  8.7620  8.0400  8.0640  7.7380  676613.0000 0000012016-02-26  2016-02-26  8.7770  7.7930  7.8250  7.6900  392154.0000 000001

合并

concat, 按照行方向或者列方向合并

# 分别取0到2行,2到4行,4到9行组成一个列表,通过concat方法按照axis=0,行方向合并, axis参数不指定,默认为0split_rows = [df.iloc[0:2,:],df.iloc[2:4,:], df.iloc[4:9]]pd.concat(split_rows)    Date    Open    Close   High    Low Volume  Codedate                            2015-12-24  2015-12-24  10.9190 9.8230  9.9980  9.7440  640229.0000 0000012015-12-25  2015-12-25  10.8550 1.0000  1.0000  9.8150  399845.0000 0000012015-12-28  2015-12-28  10.8950 1.0000  1.0000  9.5370  822408.0000 0000012015-12-29  2015-12-29  10.5450 9.6240  9.6320  9.5290  619802.0000 0000012015-12-30  2015-12-30  10.6240 9.6320  9.6400  9.5130  532667.0000 0000012015-12-31  2015-12-31  10.6320 9.5450  9.6560  9.5370  491258.0000 0000012016-01-04  2016-01-04  10.5530 8.9950  9.5770  8.9400  563497.0000 0000012016-01-05  2016-01-05  9.9720  9.0750  9.2100  8.8760  663269.0000 0000012016-01-06  2016-01-06  10.0910 9.1790  9.2020  9.0670  515706.0000 000001# 分别取2到3列,3到5列,5列及以后列数组成一个列表,通过concat方法按照axis=1,列方向合并split_columns = [df.iloc[:,1:2], df.iloc[:,2:4], df.iloc[:,4:]]pd.concat(split_columns, axis=1).head()    Open    Close   High    Low Volume  Codedate                        2015-12-24  10.9190 9.8230  9.9980  9.7440  640229.0000 0000012015-12-25  10.8550 1.0000  1.0000  9.8150  399845.0000 0000012015-12-28  10.8950 1.0000  1.0000  9.5370  822408.0000 0000012015-12-29  10.5450 9.6240  9.6320  9.5290  619802.0000 0000012015-12-30  10.6240 9.6320  9.6400  9.5130  532667.0000 000001

追加行, 相应的还有insert, 插入插入到指定位置

# 将第一行追加到最后一行df.append(df.iloc[0,:], ignore_index=True).tail()Date    Open    Close   High    Low Volume  Code637 2018-08-03  9.9300  8.9100  9.1000  8.9100  476546.0000 000001638 2018-08-06  9.9400  8.9400  9.1100  8.8900  554010.0000 000001639 2018-08-07  9.9600  9.1700  9.1700  8.8800  690423.0000 000001640 2018-08-08  10.1600 9.1100  9.1600  9.0900  153901.0000 000001641 2015-12-24  10.9190 9.8230  9.9980  9.7440  640229.0000 000001

对象复制

由于dataframe是引用对象,所以需要显示调用copy方法用以复制整个dataframe对象

绘图

pandas的绘图是使用matplotlib,如果想要画的更细致, 可以使用matplotplib,不过简单的画一些图还是不错的

因为上图太麻烦,这里就不配图了,可以在资源文件里面查看pandas-blog.ipynb文件或者自己敲一遍代码。

# 这里使用notbook,为了直接在输出中显示,需要以下配置%matplotlib inline# 绘制Open,Low,Close.High的线性图df[["Open", "Low", "High", "Close"]].plot()# 绘制面积图df[["Open", "Low", "High", "Close"]].plot(kind="area")

数据读写

读写常见文件格式,如csv,excel,json等, 甚至是读取==系统的剪切板==.这个功能有时候很有用。直接将鼠标选中复制的内容读取创建dataframe对象。

# 将df数据保存到当前工作目录的stock.csv文件df.to_csv("stock.csv")# 查看stock.csv文件前5行with open("stock.csv") as rf:    print(rf.readlines()[:5])['date,Date,Open,Close,High,Low,Volume,Code\n', '2015-12-24,2015-12-24,9.919,9.823,9.998,9.744,640229.0,000001\n', '2015-12-25,2015-12-25,9.855,9.879,9.927,9.815,399845.0,000001\n', '2015-12-28,2015-12-28,9.895,9.537,9.919,9.537,822408.0,000001\n', '2015-12-29,2015-12-29,9.545,9.624,9.632,9.529,619802.0,000001\n']# 读取stock.csv文件并将第一行作为indexdf2 = pd.read_csv("stock.csv", index_col=0)df2.head()    Date    Open    Close   High    Low Volume  Codedate                            2015-12-24  2015-12-24  9.9190  9.8230  9.9980  9.7440  640229.0000 12015-12-25  2015-12-25  9.8550  9.8790  9.9270  9.8150  399845.0000 12015-12-28  2015-12-28  9.8950  9.5370  9.9190  9.5370  822408.0000 12015-12-29  2015-12-29  9.5450  9.6240  9.6320  9.5290  619802.0000 12015-12-30  2015-12-30  9.6240  9.6320  9.6400  9.5130  532667.0000 1# 读取stock.csv文件并将第一行作为index,并且将000001作为str类型读取, 不然会被解析成整数df2 = pd.read_csv("stock.csv", index_col=0, dtype={"Code": str})df2.head()

简单实例

这里以处理web日志为例,也许不太实用 ,因为ELK处理这些绰绰有余,不过喜欢什么自己来也未尝不可

分析access.log

日志文件: https://raw.githubusercontent.com/Apache-Labor/labor/master/labor-04/labor-04-example-access.log

日志格式及示例
# 日志格式# 字段说明, 参考:https://ru.wikipedia.org/wiki/Access.log%h%l%u%t \"%r \"%> s%b \"%{Referer} i \"\"%{User-Agent} i \"# 具体示例75.249.65.145 US - [2015-09-02 10:42:51.003372] "GET /cms/tina-access-editor-for-download/ HTTP/1.1" 200 7113 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)" www.example.com 124.165.3.7 443 redirect-handler - + "-" Vea2i8CoAwcAADevXAgAAAAB TLSv1.2 ECDHE-RSA-AES128-GCM-SHA256 701 12118 -% 88871 803 0 0 0 0
读取并解析日志文件

解析日志文件

HOST = r'^(?P.*?)'SPACE = r'\s'IDENTITY = r'\S+'USER = r"\S+"TIME = r'\[(?P

将数据注入DataFrame对象

COLUMNS = ["Host", "Time", "Method", "Path", "Protocol", "status", "size", "User_Agent"]field_lis = []with open("access.log") as rf:    for line in rf:        # 由于一些记录不能匹配,所以需要捕获异常, 不能捕获的数据格式如下        # 80.32.156.105 - - [27/Mar/2009:13:39:51 +0100] "GET  HTTP/1.1" 400 - "-" "-" "-"        # 由于重点不在写正则表达式这里就略过了        try:            fields = reg.match(line).groups()        except Exception as e:            #print(e)            #print(line)            pass        field_lis.append(fields)log_df  = pd.DataFrame(field_lis)# 修改列名log_df.columns = COLUMNSdef parse_time(value):    try:        return pd.to_datetime(value)    except Exception as e:        print(e)        print(value)# 将Time列的值修改成pandas可解析的时间格式log_df.Time = log_df.Time.apply(lambda x: x.replace(":", " ", 1))log_df.Time = log_df.Time.apply(parse_time)# 修改index, 将Time列作为index,并drop掉在Time列log_df.index = pd.to_datetime(log_df.Time)log_df.drop("Time", inplace=True)log_df.head()    Host    Time    Method  Path    Protocol    status  size    User_AgentTime                                2009-03-22 06:00:32 88.191.254.20   2009-03-22 06:00:32 GET /   HTTP/1.0    200 8674    "-2009-03-22 06:06:20 66.249.66.231   2009-03-22 06:06:20 GET /popup.php?choix=-89    HTTP/1.1    200 1870    "Mozilla/5.0 (compatible; Googlebot/2.1; +htt...2009-03-22 06:11:20 66.249.66.231   2009-03-22 06:11:20 GET /specialiste.php    HTTP/1.1    200 10743   "Mozilla/5.0 (compatible; Googlebot/2.1; +htt...2009-03-22 06:40:06 83.198.250.175  2009-03-22 06:40:06 GET /   HTTP/1.1    200 8714    "Mozilla/4.0 (compatible; MSIE 7.0; Windows N...2009-03-22 06:40:06 83.198.250.175  2009-03-22 06:40:06 GET /style.css  HTTP/1.1    200 1692    "Mozilla/4.0 (compatible; MSIE 7.0; Windows N...

查看数据类型

# 查看数据类型log_df.dtypesHost                  objectTime          datetime64[ns]Method                objectPath                  objectProtocol              objectstatus                objectsize                  objectUser_Agent            objectdtype: object

由上可知, 除了Time字段是时间类型,其他都是object,但是Size, Status应该为数字

def parse_number(value):    try:        return pd.to_numeric(value)    except Exception as e:        pass        return 0# 将Size,Status字段值改为数值类型log_df[["Status","Size"]] = log_df[["Status","Size"]].apply(lambda x: x.apply(parse_number))log_df.dtypesHost                  objectTime          datetime64[ns]Method                objectPath                  objectProtocol              objectStatus                 int64Size                   int64User_Agent            objectdtype: object

统计status数据

# 统计不同status值的次数log_df.Status.value_counts()200    5737304    1540404    1186400     251302      37403       3206       2Name: Status, dtype: int64

绘制pie图

log_df.Status.value_counts().plot(kind="pie", figsize=(10,8))

查看日志文件时间跨度

log_df.index.max() - log_df.index.min()Timedelta('15 days 11:12:03')

分别查看起始,终止时间

print(log_df.index.max())print(log_df.index.min())2009-04-06 17:12:352009-03-22 06:00:32

按照此方法还可以统计Method, User_Agent字段 ,不过User_Agent还需要额外清洗以下数据

统计top 10 IP地址

91.121.31.184     74588.191.254.20     44141.224.252.122    420194.2.62.185      25586.75.35.144      184208.89.192.106    17079.82.3.8         16190.3.72.207       15762.147.243.132    15081.249.221.143    141Name: Host, dtype: int64

绘制请求走势图

log_df2 = log_df.copy()# 为每行加一个request字段,值为1log_df2["Request"] = 1# 每一小时统计一次request数量,并将NaN值替代为0,最后绘制线性图,尺寸为16x9log_df2.Request.resample("H").sum().fillna(0).plot(kind="line",figsize=(16,10))

分别绘图

分别对202,304,404状态重新取样,并放在一个列表里面req_df_lis = [log_df2[log_df2.Status == 200].Request.resample("H").sum().fillna(0),log_df2[log_df2.Status == 304].Request.resample("H").sum().fillna(0),log_df2[log_df2.Status == 404].Request.resample("H").sum().fillna(0)]# 将三个dataframe组合起来req_df = pd.concat(req_df_lis,axis=1)req_df.columns = ["200", "304", "404"]# 绘图req_df.plot(figsize=(16,10))

参考链接

https://pandas.pydata.org/pandas-docs/stable/index.html

源代码等资源文件

https://github.com/youerning/blog/tree/master/pandas

0