千家信息网

PostgreSQL中RelationGetBufferForTuple函数有什么作用

发表于:2025-02-02 作者:千家信息网编辑
千家信息网最后更新 2025年02月02日,这篇文章主要讲解了"PostgreSQL中RelationGetBufferForTuple函数有什么作用",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习
千家信息网最后更新 2025年02月02日PostgreSQL中RelationGetBufferForTuple函数有什么作用

这篇文章主要讲解了"PostgreSQL中RelationGetBufferForTuple函数有什么作用",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"PostgreSQL中RelationGetBufferForTuple函数有什么作用"吧!

本节简单介绍了PostgreSQL在执行插入过程中与缓存相关的函数RelationGetBufferForTuple,该函数返回满足空闲空间 >= 给定大小的page,并且该page对应的buffer状态为pinned和并持有独占锁。

一、数据结构

BufferDesc
共享缓冲区的共享描述符(状态)数据

/* * Flags for buffer descriptors * buffer描述器标记 * * Note: TAG_VALID essentially means that there is a buffer hashtable * entry associated with the buffer's tag. * 注意:TAG_VALID本质上意味着有一个与缓冲区的标记相关联的缓冲区散列表条目。 *///buffer header锁定#define BM_LOCKED               (1U << 22)  /* buffer header is locked *///数据需要写入(标记为DIRTY)#define BM_DIRTY                (1U << 23)  /* data needs writing *///数据是有效的#define BM_VALID                (1U << 24)  /* data is valid *///已分配buffer tag#define BM_TAG_VALID            (1U << 25)  /* tag is assigned *///正在R/W#define BM_IO_IN_PROGRESS       (1U << 26)  /* read or write in progress *///上一个I/O出现错误#define BM_IO_ERROR             (1U << 27)  /* previous I/O failed *///开始写则变DIRTY#define BM_JUST_DIRTIED         (1U << 28)  /* dirtied since write started *///存在等待sole pin的其他进程#define BM_PIN_COUNT_WAITER     (1U << 29)  /* have waiter for sole pin *///checkpoint发生,必须刷到磁盘上#define BM_CHECKPOINT_NEEDED    (1U << 30)  /* must write for checkpoint *///持久化buffer(不是unlogged或者初始化fork)#define BM_PERMANENT            (1U << 31)  /* permanent buffer (not unlogged,                                             * or init fork) *//* *  BufferDesc -- shared descriptor/state data for a single shared buffer. *  BufferDesc -- 共享缓冲区的共享描述符(状态)数据 * * Note: Buffer header lock (BM_LOCKED flag) must be held to examine or change * the tag, state or wait_backend_pid fields.  In general, buffer header lock * is a spinlock which is combined with flags, refcount and usagecount into * single atomic variable.  This layout allow us to do some operations in a * single atomic operation, without actually acquiring and releasing spinlock; * for instance, increase or decrease refcount.  buf_id field never changes * after initialization, so does not need locking.  freeNext is protected by * the buffer_strategy_lock not buffer header lock.  The LWLock can take care * of itself.  The buffer header lock is *not* used to control access to the * data in the buffer! * 注意:必须持有Buffer header锁(BM_LOCKED标记)才能检查或修改tag/state/wait_backend_pid字段. * 通常来说,buffer header lock是spinlock,它与标记位/参考计数/使用计数组合到单个原子变量中. * 这个布局设计允许我们执行原子操作,而不需要实际获得或者释放spinlock(比如,增加或者减少参考计数). * buf_id字段在初始化后不会出现变化,因此不需要锁定. * freeNext通过buffer_strategy_lock锁而不是buffer header lock保护. * LWLock可以很好的处理自己的状态. * 务请注意的是:buffer header lock不用于控制buffer中的数据访问! * * It's assumed that nobody changes the state field while buffer header lock * is held.  Thus buffer header lock holder can do complex updates of the * state variable in single write, simultaneously with lock release (cleaning * BM_LOCKED flag).  On the other hand, updating of state without holding * buffer header lock is restricted to CAS, which insure that BM_LOCKED flag * is not set.  Atomic increment/decrement, OR/AND etc. are not allowed. * 假定在持有buffer header lock的情况下,没有人改变状态字段. * 持有buffer header lock的进程可以执行在单个写操作中执行复杂的状态变量更新, *   同步的释放锁(清除BM_LOCKED标记). * 换句话说,如果没有持有buffer header lock的状态更新,会受限于CAS, *   这种情况下确保BM_LOCKED没有被设置. * 比如原子的增加/减少(AND/OR)等操作是不允许的. * * An exception is that if we have the buffer pinned, its tag can't change * underneath us, so we can examine the tag without locking the buffer header. * Also, in places we do one-time reads of the flags without bothering to * lock the buffer header; this is generally for situations where we don't * expect the flag bit being tested to be changing. * 一种例外情况是如果我们已有buffer pinned,该buffer的tag不能改变(在本进程之下), *   因此不需要锁定buffer header就可以检查tag了. * 同时,在执行一次性的flags读取时不需要锁定buffer header. * 这种情况通常用于我们不希望正在测试的flag bit将被改变. * * We can't physically remove items from a disk page if another backend has * the buffer pinned.  Hence, a backend may need to wait for all other pins * to go away.  This is signaled by storing its own PID into * wait_backend_pid and setting flag bit BM_PIN_COUNT_WAITER.  At present, * there can be only one such waiter per buffer. * 如果其他进程有buffer pinned,那么进程不能物理的从磁盘页面中删除items. * 因此,后台进程需要等待其他pins清除.这可以通过存储它自己的PID到wait_backend_pid中, *   并设置标记位BM_PIN_COUNT_WAITER. * 目前,每个缓冲区只能由一个等待进程. * * We use this same struct for local buffer headers, but the locks are not * used and not all of the flag bits are useful either. To avoid unnecessary * overhead, manipulations of the state field should be done without actual * atomic operations (i.e. only pg_atomic_read_u32() and * pg_atomic_unlocked_write_u32()). * 本地缓冲头部使用同样的结构,但并不需要使用locks,而且并不是所有的标记位都使用. * 为了避免不必要的负载,状态域的维护不需要实际的原子操作 * (比如只有pg_atomic_read_u32() and pg_atomic_unlocked_write_u32()) * * Be careful to avoid increasing the size of the struct when adding or * reordering members.  Keeping it below 64 bytes (the most common CPU * cache line size) is fairly important for performance. * 在增加或者记录成员变量时,小心避免增加结构体的大小. * 保持结构体大小在64字节内(通常的CPU缓存线大小)对于性能是非常重要的. */typedef struct BufferDesc{    //buffer tag    BufferTag   tag;            /* ID of page contained in buffer */    //buffer索引编号(0开始),指向相应的buffer pool slot    int         buf_id;         /* buffer's index number (from 0) */    /* state of the tag, containing flags, refcount and usagecount */    //tag状态,包括flags/refcount和usagecount    pg_atomic_uint32 state;    //pin-count等待进程ID    int         wait_backend_pid;   /* backend PID of pin-count waiter */    //空闲链表链中下一个空闲的buffer    int         freeNext;       /* link in freelist chain */    //缓冲区内容锁    LWLock      content_lock;   /* to lock access to buffer contents */} BufferDesc;

BufferTag
Buffer tag标记了buffer存储的是磁盘中哪个block

/* * Buffer tag identifies which disk block the buffer contains. * Buffer tag标记了buffer存储的是磁盘中哪个block * * Note: the BufferTag data must be sufficient to determine where to write the * block, without reference to pg_class or pg_tablespace entries.  It's * possible that the backend flushing the buffer doesn't even believe the * relation is visible yet (its xact may have started before the xact that * created the rel).  The storage manager must be able to cope anyway. * 注意:BufferTag必须足以确定如何写block而不需要参照pg_class或者pg_tablespace数据字典信息. * 有可能后台进程在刷新缓冲区的时候深圳不相信关系是可见的(事务可能在创建rel的事务之前). * 存储管理器必须可以处理这些事情. * * Note: if there's any pad bytes in the struct, INIT_BUFFERTAG will have * to be fixed to zero them, since this struct is used as a hash key. * 注意:如果在结构体中有填充的字节,INIT_BUFFERTAG必须将它们固定为零,因为这个结构体用作散列键. */typedef struct buftag{    //物理relation标识符    RelFileNode rnode;          /* physical relation identifier */    ForkNumber  forkNum;    //相对于relation起始的块号    BlockNumber blockNum;       /* blknum relative to begin of reln */} BufferTag;

二、源码解读

RelationGetBufferForTuple函数返回满足空闲空间>=给定大小的page,并且该page对应的buffer状态为pinned和并持有独占锁
输入:
relation-数据表
len-需要的空间大小
otherBuffer-用于update场景,上一次pinned的buffer
options-处理选项
bistate-BulkInsert标记
vmbuffer-第1个vm(visibilitymap)
vmbuffer_other-用于update场景,上一次pinned的buffer对应的vm(visibilitymap)
注意:
otherBuffer这个参数让人觉得困惑,原因是PG的机制使然
Update时,不是原地更新,而是原数据保留(更新xmax),新数据插入
原数据&新数据如果在不同Block中,锁定Block的时候可能会出现Deadlock
举个例子:Session A更新表T的第一行,第一行在Block 0中,新数据存储在Block 2中
Session B更新表T的第二行,第二行在Block 0中,新数据存储在Block 2中
Block 0/2均要锁定才能完整实现Update操作:
如果Session A先锁定了Block 2,Session B先锁定了Block 0,
然后Session A尝试锁定Block 0,Session B尝试锁定Block 2,这时候就会出现死锁
为了避免这种情况,PG规定锁定时,同一个Relation,按Block的编号顺序锁定,
如需要锁定0和2,那必须先锁定Block 0,再锁定2
输出:
为Tuple分配的Buffer
其主要实现逻辑如下:
1.初始化相关变量
2.获取预留空间
3.如为Update操作,则获取上次pinned buffer对应的Block
4.获取目标page:targetBlock
5.如targetBlock非法,并且使用FSM,则使用FSM寻找
6.如targetBlock仍非法,则循环遍历page检索合适的Block
6.1.读取并独占锁定目标block,以及给定的otherBuffer(如给出)
6.2.获取vm
6.3.读取buffer,判断是否有足够的空闲空间,如足够,则返回
6.4.如仍不足够,则调用RecordAndGetPageWithFreeSpace获取targetBlock,再次循环
7.遍历完毕,仍找不到block,则扩展表
8.扩展表后,以P_NEW模式读取buffer并锁定
9.获取该buffer对应的page,执行相关校验
10.校验不通过报错,校验通过则返回buffer

/* * RelationGetBufferForTuple * *  Returns pinned and exclusive-locked buffer of a page in given relation *  with free space >= given len. *  返回满足空闲空间>=给定大小的page,并且该page对应的buffer状态为pinned和并持有独占锁 * *  If otherBuffer is not InvalidBuffer, then it references a previously *  pinned buffer of another page in the same relation; on return, this *  buffer will also be exclusive-locked.  (This case is used by heap_update; *  the otherBuffer contains the tuple being updated.) *  如果otherBuffer不是InvalidBuffer, *    那么otherBuffer依赖的是先前同一个relation但是其他page的pinned buffer. *  返回时,该buffer同时被独占锁定. *  (heap_update会出现这种情况,otherBuffer存储正update的tuple) * *  The reason for passing otherBuffer is that if two backends are doing *  concurrent heap_update operations, a deadlock could occur if they try *  to lock the same two buffers in opposite orders.  To ensure that this *  can't happen, we impose the rule that buffers of a relation must be *  locked in increasing page number order.  This is most conveniently done *  by having RelationGetBufferForTuple lock them both, with suitable care *  for ordering. *  传递otherBuffer的原因是如果两个进程在并发heap_update操作, *  如果它们尝试以相反的顺序锁定相同的两个buffer,那会出现死锁. *  为了确保这种情况不会出现,我们规定,关系缓冲区必须按page的编号顺序锁定. *  要做到这一点,最方便的方法是让RelationGetBufferForTuple注意顺序锁定它们. * *  NOTE: it is unlikely, but not quite impossible, for otherBuffer to be the *  same buffer we select for insertion of the new tuple (this could only *  happen if space is freed in that page after heap_update finds there's not *  enough there).  In that case, the page will be pinned and locked only once. *  注意:这不太可能,但又不是不可能,为了让otherBuffer与我们选择插入新元组的buffer一致. *  (这只会发生在在执行heap_update检索page发现没有足够的空闲空间,但随后空间被释放的情况) *  在这种情况下,page会被pinned并且只会lock一次. * *  For the vmbuffer and vmbuffer_other arguments, we avoid deadlock by *  locking them only after locking the corresponding heap page, and taking *  no further lwlocks while they are locked. *  对于vmbuffer和vmbuffer_other参数,通过在锁定相应的heap page后再锁定它们来避免死锁, *    同时,在被锁定后,不再持有lwlocks. * *  We normally use FSM to help us find free space.  However, *  if HEAP_INSERT_SKIP_FSM is specified, we just append a new empty page to *  the end of the relation if the tuple won't fit on the current target page. *  This can save some cycles when we know the relation is new and doesn't *  contain useful amounts of free space. *  通常来说,使用FSM检索空闲空间.但是,如果指定了HEAP_INSERT_SKIP_FSM, *    那么如果当前的目标page不适合,则直接在relation的最后追加空page. *  这样可以在知道relation是新的情况下,节省一些处理时间,而且不需要持有有用的空闲空间计数信息. * *  HEAP_INSERT_SKIP_FSM is also useful for non-WAL-logged additions to a *  relation, if the caller holds exclusive lock and is careful to invalidate *  relation's smgr_targblock before the first insertion --- that ensures that *  all insertions will occur into newly added pages and not be intermixed *  with tuples from other transactions.  That way, a crash can't risk losing *  any committed data of other transactions.  (See heap_insert's comments *  for additional constraints needed for safe usage of this behavior.) *  HEAP_INSERT_SKIP_FSM同时对于非WAL logged关系也是有用的, *    如果调用者持有独占锁并且在首次插入前使得关系的smgr_targblock无效 --- *    这可以确保所有的插入会出现在新增加的pages中,而不会与其他事务的tuple混起来. *  按这种方式,如果出现宕机,那么就不会有丢失其他事务提交的数据的风险. *  (详细参考heap_insert的注释,里面提到了使用该动作的其他约束) * *  The caller can also provide a BulkInsertState object to optimize many *  insertions into the same relation.  This keeps a pin on the current *  insertion target page (to save pin/unpin cycles) and also passes a *  BULKWRITE buffer selection strategy object to the buffer manager. *  Passing NULL for bistate selects the default behavior. *  调用者同时提供了BulkInsertState对象用于优化大量插入到同一个relation的情况. *  这会在当前插入的目标page保持pin(节省pin/unpin处理过程) *    同时会传递BULKWRITE缓冲区选择器策略对象到buffer manager中. *  如使用默认模式,则设置bitstate为NULL. * *  We always try to avoid filling existing pages further than the fillfactor. *  This is OK since this routine is not consulted when updating a tuple and *  keeping it on the same page, which is the scenario fillfactor is meant *  to reserve space for. *  我们通常尝试避免填充现有页面超过填充因子设定的范围. *  这是没有问题的,因为在更新元组并将其保存在同一个page中时,不会参考此例程, *    该场景下填充因子会用到. * *  ereport(ERROR) is allowed here, so this routine *must* be called *  before any (unlogged) changes are made in buffer pool. *  ereport(ERROR)可在这允许使用,因此该例程必须在buffer pool出现任何变化前调用. *//*输入:    relation-数据表    len-需要的空间大小    otherBuffer-用于update场景,上一次pinned的buffer    options-处理选项    bistate-BulkInsert标记    vmbuffer-第1个vm(visibilitymap)    vmbuffer_other-用于update场景,上一次pinned的buffer对应的vm(visibilitymap)    注意:    otherBuffer这个参数让人觉得困惑,原因是PG的机制使然    Update时,不是原地更新,而是原数据保留(更新xmax),新数据插入    原数据&新数据如果在不同Block中,锁定Block的时候可能会出现Deadlock    举个例子:Session A更新表T的第一行,第一行在Block 0中,新数据存储在Block 2中              Session B更新表T的第二行,第二行在Block 0中,新数据存储在Block 2中              Block 0/2均要锁定才能完整实现Update操作:              如果Session A先锁定了Block 2,Session B先锁定了Block 0,              然后Session A尝试锁定Block 0,Session B尝试锁定Block 2,这时候就会出现死锁              为了避免这种情况,PG规定锁定时,同一个Relation,按Block的编号顺序锁定,              如需要锁定0和2,那必须先锁定Block 0,再锁定2输出:    为Tuple分配的Buffer附:Pinned buffers:means buffers are currently being used,it should not be flushed out.*/BufferRelationGetBufferForTuple(Relation relation, Size len,                          Buffer otherBuffer, int options,                          BulkInsertState bistate,                          Buffer *vmbuffer, Buffer *vmbuffer_other){    bool        use_fsm = !(options & HEAP_INSERT_SKIP_FSM);//是否使用FSM寻找空闲空间    Buffer      buffer = InvalidBuffer;//    Page        page;//    Size        pageFreeSpace = 0,//page空闲空间                saveFreeSpace = 0;//page需要预留的空间    BlockNumber targetBlock,//目标Block                otherBlock;//上一次pinned的buffer对应的Block    bool        needLock;//是否需要上锁    //大小对齐    len = MAXALIGN(len);        /* be conservative */    /* Bulk insert is not supported for updates, only inserts. */    //otherBuffer有效,说明是update操作,不支持bi(BulkInsert)    //bulk操作仅支持插入    Assert(otherBuffer == InvalidBuffer || !bistate);    /*     * If we're gonna fail for oversize tuple, do it right away     * 对于超限的元组,直接报错     */    //#define MaxHeapTupleSize  (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData)))    //#define MinHeapTupleSize  MAXALIGN(SizeofHeapTupleHeader)    if (len > MaxHeapTupleSize)        ereport(ERROR,                (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),                 errmsg("row is too big: size %zu, maximum size %zu",                        len, MaxHeapTupleSize)));    /* Compute desired extra freespace due to fillfactor option */    //获取预留空间    // #define RelationGetTargetPageFreeSpace(relation, defaultff) \     (BLCKSZ * (100 - RelationGetFillFactor(relation, defaultff)) / 100)    saveFreeSpace = RelationGetTargetPageFreeSpace(relation,                                                   HEAP_DEFAULT_FILLFACTOR);    //update操作,获取上次pinned buffer对应的Block    if (otherBuffer != InvalidBuffer)        otherBlock = BufferGetBlockNumber(otherBuffer);    else        otherBlock = InvalidBlockNumber;    /* just to keep compiler quiet */    /*     * We first try to put the tuple on the same page we last inserted a tuple     * on, as cached in the BulkInsertState or relcache entry.  If that     * doesn't work, we ask the Free Space Map to locate a suitable page.     * Since the FSM's info might be out of date, we have to be prepared to     * loop around and retry multiple times. (To insure this isn't an infinite     * loop, we must update the FSM with the correct amount of free space on     * each page that proves not to be suitable.)  If the FSM has no record of     * a page with enough free space, we give up and extend the relation.     * 首先会尝试把元组放在最后插入元组的page上,比如BulkInsertState或者relcache条目.     * 如果找不到,那么我们通过FSM来定位合适的page.     * 由于FSM的信息可能过期,这时候不得不循环并尝试多次.     * (为了确保这不是一个无限循环,必须使用正确的页面空闲空间信息更新不靠谱的FSM)     * 如果FSM中信息提示没有page有空闲空间,放弃并扩展relation.     *     * When use_fsm is false, we either put the tuple onto the existing target     * page or extend the relation.     * 如use_fsm为F,我们要不把元组放在现存的目标page上,要不扩展relation.     */    if (len + saveFreeSpace > MaxHeapTupleSize)    {        //如果需要的大小+预留空间大于可容纳的最大Tuple大小,不使用FSM,扩展后再尝试        /* can't fit, don't bother asking FSM */        targetBlock = InvalidBlockNumber;        use_fsm = false;    }    else if (bistate && bistate->current_buf != InvalidBuffer)//BulkInsert模式        targetBlock = BufferGetBlockNumber(bistate->current_buf);    else        targetBlock = RelationGetTargetBlock(relation);//普通Insert模式    if (targetBlock == InvalidBlockNumber && use_fsm)    {        //还没有找到合适的BlockNumber,并且需要使用FSM        /*         * We have no cached target page, so ask the FSM for an initial         * target.         * 没有缓存目标page,使用FSM获取初始目标page         */        //使用FSM申请空闲空间=len + saveFreeSpace的块        targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);        /*         * If the FSM knows nothing of the rel, try the last page before we         * give up and extend.  This avoids one-tuple-per-page syndrome during         * bootstrapping or in a recently-started system.         * 如果FSM对rel一无所知,在放弃并扩展前尝试下最后那个page.         * 这可以避免在bootstrapping或者最近已启动系统时一个元组一个page的情况.         */        //申请不到,使用最后一个块,否则扩展或者放弃        if (targetBlock == InvalidBlockNumber)        {            BlockNumber nblocks = RelationGetNumberOfBlocks(relation);            if (nblocks > 0)                targetBlock = nblocks - 1;        }    }loop:    while (targetBlock != InvalidBlockNumber)    {        //---------- 循环直至成功获取插入数据的块号        /*         * Read and exclusive-lock the target block, as well as the other         * block if one was given, taking suitable care with lock ordering and         * the possibility they are the same block.         * 读取并独占锁定目标block,以及给定的另外一个快(如给出),需要适当的关注锁的顺序         *   并关注它们是否同一个块.         *         * If the page-level all-visible flag is set, caller will need to         * clear both that and the corresponding visibility map bit.  However,         * by the time we return, we'll have x-locked the buffer, and we don't         * want to do any I/O while in that state.  So we check the bit here         * before taking the lock, and pin the page if it appears necessary.         * Checking without the lock creates a risk of getting the wrong         * answer, so we'll have to recheck after acquiring the lock.         * 如果设置了块级别的all-visible flag,调用者需要清空该块的标记和相应的vm标记.         * 但是,在返回时,我们将持有buffer的独占锁,并且我们不希望在这种情况下执行I/O操作.         * 因此,我们在获取锁前检查标记位,如看起来需要的话,pin page.         * 没有持有锁执行检查会出现错误,因此我们将不得不在获取锁后重新执行检查.         */        if (otherBuffer == InvalidBuffer)        {            //----------- 非Update操作            /* easy case */            //这种情况比较简单            //获取Buffer            buffer = ReadBufferBI(relation, targetBlock, bistate);            if (PageIsAllVisible(BufferGetPage(buffer)))                //如果Page可见,那么把Page Pin在内存中(Pin的意思是固定/保留)                visibilitymap_pin(relation, targetBlock, vmbuffer);            LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);//锁定buffer        }        else if (otherBlock == targetBlock)        {            //----------- Update操作,新记录跟原记录在同一个Block中            //这种情况也比较简单            /* also easy case */            buffer = otherBuffer;            if (PageIsAllVisible(BufferGetPage(buffer)))                visibilitymap_pin(relation, targetBlock, vmbuffer);            LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);        }        else if (otherBlock < targetBlock)        {            //----------- Update操作,原记录所在的Block < 新记录的Block            /* lock other buffer first */            //首先锁定otherBlock            buffer = ReadBuffer(relation, targetBlock);            if (PageIsAllVisible(BufferGetPage(buffer)))                visibilitymap_pin(relation, targetBlock, vmbuffer);            //优先锁定BlockNumber小的那个            LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);            LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);        }        else        {            //------------ Update操作,原记录所在的Block > 新记录的Block            /* lock target buffer first */            buffer = ReadBuffer(relation, targetBlock);            if (PageIsAllVisible(BufferGetPage(buffer)))                visibilitymap_pin(relation, targetBlock, vmbuffer);            //优先锁定BlockNumber小的那个            LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);            LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);        }        /*         * We now have the target page (and the other buffer, if any) pinned         * and locked.  However, since our initial PageIsAllVisible checks         * were performed before acquiring the lock, the results might now be         * out of date, either for the selected victim buffer, or for the         * other buffer passed by the caller.  In that case, we'll need to         * give up our locks, go get the pin(s) we failed to get earlier, and         * re-lock.  That's pretty painful, but hopefully shouldn't happen         * often.         * 现在已有了target page,并且该page(包括other buffer,如存在)已缓存到内存中(pinned)且已锁定.         * 但是,由于初始的PageIsAllVisible在获取锁前执行,结果可能已经过期,         *   这时候可能选择了需要被淘汰的buffer或者otherBuffer出现了变化.         * 在这种情况下,需要放弃锁,回到先前曾经失败的pin的地方,重新锁定.         * 这蛮吐血的,希望不要经常出现.         *         * Note that there's a small possibility that we didn't pin the page         * above but still have the correct page pinned anyway, either because         * we've already made a previous pass through this loop, or because         * caller passed us the right page anyway.         * 注意存在较小的可能是我们在上面不需要pin page,但仍然需要持有正确的pinned page,         *   这一方面是因为我们已经通过该循环执行了一遍,另外一方面是调用者通过其他方式传入了正确的page.         *         * Note also that it's possible that by the time we get the pin and         * retake the buffer locks, the visibility map bit will have been         * cleared by some other backend anyway.  In that case, we'll have         * done a bit of extra work for no gain, but there's no real harm         * done.         * 同时要注意在我们获取pin并且重新获取buffer lock时,vm位已被其他后台进程清除了.         * 在这种情况下,我们需要执行一些额外的工作以避免重复工作,但这实质上并没有什么危害.         */        if (otherBuffer == InvalidBuffer || buffer <= otherBuffer)            GetVisibilityMapPins(relation, buffer, otherBuffer,                                 targetBlock, otherBlock, vmbuffer,                                 vmbuffer_other);//Pin VM在内存中        else            GetVisibilityMapPins(relation, otherBuffer, buffer,                                 otherBlock, targetBlock, vmbuffer_other,                                 vmbuffer);//Pin VM在内存中        /*         * Now we can check to see if there's enough free space here. If so,         * we're done.         * 现在我们可以检查是否有足够的空闲空间.         * 如有,则我们已完成所有工作了.         */        page = BufferGetPage(buffer);        pageFreeSpace = PageGetHeapFreeSpace(page);        if (len + saveFreeSpace <= pageFreeSpace)        {            //有足够的空间存储数据,返回此Buffer            /* use this page as future insert target, too */            //用这个page作为未来插入的目标page            /*            #define RelationSetTargetBlock(relation, targblock) \            do { \                RelationOpenSmgr(relation); \                (relation)->rd_smgr->smgr_targblock = (targblock); \            } while (0)            */            RelationSetTargetBlock(relation, targetBlock);            return buffer;        }        /*         * Not enough space, so we must give up our page locks and pin (if         * any) and prepare to look elsewhere.  We don't care which order we         * unlock the two buffers in, so this can be slightly simpler than the         * code above.         * 空间不够,必须放弃持有的page locks和pin,准备检索其他地方.         * 在解锁时不需要关注两个buffer的顺序,这个逻辑比先前的逻辑要简单.         */        LockBuffer(buffer, BUFFER_LOCK_UNLOCK);        if (otherBuffer == InvalidBuffer)            ReleaseBuffer(buffer);        else if (otherBlock != targetBlock)        {            LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);            ReleaseBuffer(buffer);        }        /* Without FSM, always fall out of the loop and extend */        //不使用FSM定位空闲空间,跳出循环,执行扩展        if (!use_fsm)            break;        /*         * Update FSM as to condition of this page, and ask for another page         * to try.         */        //使用FSM获取下一个备选的Block        //注意:如果全部扫描后发现没有满足条件的Block,targetBlock = InvalidBlockNumber,跳出循环        targetBlock = RecordAndGetPageWithFreeSpace(relation,                                                    targetBlock,                                                    pageFreeSpace,                                                    len + saveFreeSpace);    }    //--------- 没有获取满足条件的Block,扩展表    /*     * Have to extend the relation.     *     * We have to use a lock to ensure no one else is extending the rel at the     * same time, else we will both try to initialize the same new page.  We     * can skip locking for new or temp relations, however, since no one else     * could be accessing them.     * 必须锁定以确保其他进程不能扩展rel,否则我们会同时尝试初始化新的page.     * 但是,我们可以为新的或者临时关系跳过锁定,这时候没有其他进程可以访问它们.     */    //新创建的数据表或者临时表,无需Lock    needLock = !RELATION_IS_LOCAL(relation);    /*     * If we need the lock but are not able to acquire it immediately, we'll     * consider extending the relation by multiple blocks at a time to manage     * contention on the relation extension lock.  However, this only makes     * sense if we're using the FSM; otherwise, there's no point.     * 如果需要锁定但不能够马上获取,考虑通过一次性多个blocks的方式扩展关系,     *   这样可以在关系扩展锁上管理竞争.     * 但是,这在使用FSM的时候才会奇效,否则没有其他太好的办法.     */    if (needLock)//需要锁定    {        if (!use_fsm)            //不使用FSM            LockRelationForExtension(relation, ExclusiveLock);        else if (!ConditionalLockRelationForExtension(relation, ExclusiveLock))        {            /* Couldn't get the lock immediately; wait for it. */            //不能马上获取锁,等待            LockRelationForExtension(relation, ExclusiveLock);            /*             * Check if some other backend has extended a block for us while             * we were waiting on the lock.             */            //如有其它进程扩展了数据表,那么可以成功获取满足条件的targetBlock            targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);            /*             * If some other waiter has already extended the relation, we             * don't need to do so; just use the existing freespace.             * 如果其他等待进程已经扩展了关系,那么我们不需要再扩展了,使用现成的空闲空间即可.             */            if (targetBlock != InvalidBlockNumber)            {                UnlockRelationForExtension(relation, ExclusiveLock);                goto loop;            }            /* Time to bulk-extend. */            //其它进程没有扩展            //Just extend it!            RelationAddExtraBlocks(relation, bistate);        }    }    /*     * In addition to whatever extension we performed above, we always add at     * least one block to satisfy our own request.     * 处理上面执行的扩展,我们总是添加了至少一个block用以满足自身需要.     *     * XXX This does an lseek - rather expensive - but at the moment it is the     * only way to accurately determine how many blocks are in a relation.  Is     * it worth keeping an accurate file length in shared memory someplace,     * rather than relying on the kernel to do it for us?     * XXX 这相当于做了一次lseek - 相当昂贵的操作! - 在这时候这也是唯一可以准确确定关系有多少blocks的方法.     * 相对于不是使用内核来完成这个事情,在内存的某个地方保存准确的文件尺寸是否更好?     */    //扩展表后,New Page!    buffer = ReadBufferBI(relation, P_NEW, bistate);    /*     * We can be certain that locking the otherBuffer first is OK, since it     * must have a lower page number.     * 这时候可以确定首先锁定的otherBuffer没有问题,因为它有一个较小的page编号     */    if (otherBuffer != InvalidBuffer)        ////otherBuffer的顺序一定在扩展的Block之前,Lock it!        LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);    /*     * Now acquire lock on the new page.     * 现在可以尝试为新page上锁     */    //锁定New Page    LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);    /*     * Release the file-extension lock; it's now OK for someone else to extend     * the relation some more.  Note that we cannot release this lock before     * we have buffer lock on the new page, or we risk a race condition     * against vacuumlazy.c --- see comments therein.     * 是否文件扩展锁.现在对于其他进程来说可以扩展relation了.     * 注意不能在持有新page的buffer lock前释放该锁,否则将会在vacuumlazy.c中存在条件竞争.     * 详细可参见注释.     */    if (needLock)        //释放扩展锁        UnlockRelationForExtension(relation, ExclusiveLock);    /*     * We need to initialize the empty new page.  Double-check that it really     * is empty (this should never happen, but if it does we don't want to     * risk wiping out valid data).     * 我们需要初始化空的新page.     * 需再次检查该page是空的(这应该不会出现,但执行这个操作是因为我们不希望冒删除有效数据的风险)     */    //获取相应的Page    page = BufferGetPage(buffer);    if (!PageIsNew(page))        //不是New Page,那一定某个地方搞错了!        elog(ERROR, "page %u of relation \"%s\" should be empty but is not",             BufferGetBlockNumber(buffer),             RelationGetRelationName(relation));    //初始化New Page    PageInit(page, BufferGetPageSize(buffer), 0);    //New Page也满足不了要求的大小,报错    if (len > PageGetHeapFreeSpace(page))    {        /* We should not get here given the test at the top */        elog(PANIC, "tuple is too big: size %zu", len);    }    /*     * Remember the new page as our target for future insertions.     * 记录新page为未来插入的目标page.     *     * XXX should we enter the new page into the free space map immediately,     * or just keep it for this backend's exclusive use in the short run     * (until VACUUM sees it)?  Seems to depend on whether you expect the     * current backend to make more insertions or not, which is probably a     * good bet most of the time.  So for now, don't add it to FSM yet.     * XXX 我们应该马上把新的page放到FSM中吗,     *   或者只是把该page放在后台进程的私有空间中在很短时间内独占使用(直至vacuum可以看到它位置)?     * 看起来这依赖于你希望当前的后台进程是否执行更多的插入操作,这在大多数时间下会更好.     * 因此,现在还没有把它添加到FSM中.     */    //终于找到了可用于存储数据的Block    RelationSetTargetBlock(relation, BufferGetBlockNumber(buffer));    //返回    return buffer;}

三、跟踪分析

测试脚本

15:54:13 (xdb@[local]:5432)testdb=# insert into t1 values (1,'1','1');

调用栈

(gdb) b RelationGetBufferForTupleBreakpoint 1 at 0x4ef179: file hio.c, line 318.(gdb) cContinuing.Breakpoint 1, RelationGetBufferForTuple (relation=0x7f4f51fe39b8, len=32, otherBuffer=0, options=0, bistate=0x0,     vmbuffer=0x7ffea95dbf6c, vmbuffer_other=0x0) at hio.c:318318     bool        use_fsm = !(options & HEAP_INSERT_SKIP_FSM);(gdb) bt#0  RelationGetBufferForTuple (relation=0x7f4f51fe39b8, len=32, otherBuffer=0, options=0, bistate=0x0,     vmbuffer=0x7ffea95dbf6c, vmbuffer_other=0x0) at hio.c:318#1  0x00000000004df1f8 in heap_insert (relation=0x7f4f51fe39b8, tup=0x178a478, cid=0, options=0, bistate=0x0)    at heapam.c:2468#2  0x0000000000709dda in ExecInsert (mtstate=0x178a220, slot=0x178a680, planSlot=0x178a680, estate=0x1789eb8,     canSetTag=true) at nodeModifyTable.c:529#3  0x000000000070c475 in ExecModifyTable (pstate=0x178a220) at nodeModifyTable.c:2159#4  0x00000000006e05cb in ExecProcNodeFirst (node=0x178a220) at execProcnode.c:445#5  0x00000000006d552e in ExecProcNode (node=0x178a220) at ../../../src/include/executor/executor.h:247#6  0x00000000006d7d66 in ExecutePlan (estate=0x1789eb8, planstate=0x178a220, use_parallel_mode=false,     operation=CMD_INSERT, sendTuples=false, numberTuples=0, direction=ForwardScanDirection, dest=0x17a7688,     execute_once=true) at execMain.c:1723#7  0x00000000006d5af8 in standard_ExecutorRun (queryDesc=0x178e458, direction=ForwardScanDirection, count=0,     execute_once=true) at execMain.c:364#8  0x00000000006d5920 in ExecutorRun (queryDesc=0x178e458, direction=ForwardScanDirection, count=0, execute_once=true)    at execMain.c:307#9  0x00000000008c1092 in ProcessQuery (plan=0x16b3ac0, sourceText=0x16b1ec8 "insert into t1 values (1,'1','1');",     params=0x0, queryEnv=0x0, dest=0x17a7688, completionTag=0x7ffea95dc500 "") at pquery.c:161#10 0x00000000008c29a1 in PortalRunMulti (portal=0x1717488, isTopLevel=true, setHoldSnapshot=false, dest=0x17a7688,     altdest=0x17a7688, completionTag=0x7ffea95dc500 "") at pquery.c:1286#11 0x00000000008c1f7a in PortalRun (portal=0x1717488, count=9223372036854775807, isTopLevel=true, run_once=true,     dest=0x17a7688, altdest=0x17a7688, completionTag=0x7ffea95dc500 "") at pquery.c:799#12 0x00000000008bbf16 in exec_simple_query (query_string=0x16b1ec8 "insert into t1 values (1,'1','1');") at postgres.c:1145#13 0x00000000008c01a1 in PostgresMain (argc=1, argv=0x16dbaf8, dbname=0x16db960 "testdb", username=0x16aeba8 "xdb")    at postgres.c:4182#14 0x000000000081e07c in BackendRun (port=0x16d3940) at postmaster.c:4361#15 0x000000000081d7ef in BackendStartup (port=0x16d3940) at postmaster.c:4033---Type  to continue, or q  to quit---#16 0x0000000000819be9 in ServerLoop () at postmaster.c:1706#17 0x000000000081949f in PostmasterMain (argc=1, argv=0x16acb60) at postmaster.c:1379#18 0x0000000000742941 in main (argc=1, argv=0x16acb60) at main.c:228(gdb)

感谢各位的阅读,以上就是"PostgreSQL中RelationGetBufferForTuple函数有什么作用"的内容了,经过本文的学习后,相信大家对PostgreSQL中RelationGetBufferForTuple函数有什么作用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0