千家信息网

如何深入解析MySQL分区Partition功能

发表于:2025-01-21 作者:千家信息网编辑
千家信息网最后更新 2025年01月21日,这篇文章将为大家详细讲解有关如何深入解析MySQL分区Partition功能,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。自5.1开始对分区(Part
千家信息网最后更新 2025年01月21日如何深入解析MySQL分区Partition功能

这篇文章将为大家详细讲解有关如何深入解析MySQL分区Partition功能,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

自5.1开始对分区(Partition)有支持

= 水平分区(根据列属性按行分)=
举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。

=== 水平分区的几种模式:===
* Range(范围) - 这种模式允许DBA将数据划分不同范围。例如DBA可以将一个表通过年份划分成三个分区,80年代(1980's)的数据,90年代(1990's)的数据以及任何在2000年(包括2000年)后的数据。

* Hash(哈希) - 这中模式允许DBA通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区,。例如DBA可以建立一个对表主键进行分区的表。

* Key(键值) - 上面Hash模式的一种延伸,这里的Hash Key是MySQL系统产生的。

* List(预定义列表) - 这种模式允许系统通过DBA定义的列表的值所对应的行数据进行分割。例如:DBA建立了一个横跨三个分区的表,分别根据2004年2005年和2006年值所对应的数据。

* Composite(复合模式) - 很神秘吧,哈哈,其实是以上模式的组合使用而已,就不解释了。举例:在初始化已经进行了Range范围分区的表上,我们可以对其中一个分区再进行hash哈希分区。

= 垂直分区(按列分)=
举个简单例子:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,这时候就要把这些不经常使用的text和BLOB了划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。


[分区表和未分区表试验过程]

*创建分区表,按日期的年份拆分

[sql] view plain copy

  1. mysql> CREATE TABLE part_tab ( c1 int default NULL, c2 varchar(30) default NULL, c3 date default NULL) engine=myisam

  2. PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995),

  3. PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) ,

  4. PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) ,

  5. PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) ,

  6. PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) ,

  7. PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010),

  8. PARTITION p11 VALUES LESS THAN MAXVALUE );

注意最后一行,考虑到可能的最大值

*创建未分区表

[sql] view plain copy

  1. mysql> create table no_part_tab (c1 int(11) default NULL,c2 varchar(30) default NULL,c3 date default NULL) engine=myisam;


*通过存储过程灌入800万条测试数据

mysql> set sql_mode=''; /* 如果创建存储过程失败,则先需设置此变量, bug? */

MySQL> delimiter // /* 设定语句终结符为 //,因存储过程语句用;结束 */

[sql] view plain copy

  1. mysql> CREATE PROCEDURE load_part_tab()

  2. begin

  3. declare v int default 0;

  4. while v < 8000000

  5. do

  6. insert into part_tab

  7. values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652));

  8. set v = v + 1;

  9. end while;

  10. end

  11. //

  12. mysql> delimiter ;

  13. mysql> call load_part_tab();

Query OK, 1 row affected (8 min 17.75 sec)

[sql] view plain copy

  1. mysql> insert into no_part_tab select * from part_tab;

Query OK, 8000000 rows affected (51.59 sec)
Records: 8000000 Duplicates: 0 Warnings: 0

* 测试SQL性能

[sql] view plain copy

  1. mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';

+----------+
| count(*) |
+----------+
| 795181 |
+----------+

1 row in set (0.55 sec)

[sql] view plain copy

  1. mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';

+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (4.69 sec)
结果表明分区表比未分区表的执行时间少90%。

* 通过explain语句来分析执行情况

[sql] view plain copy

  1. mysql > explain select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G

/* 结尾的\G使得mysql的输出改为列模式 */
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: no_part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 8000000
Extra: Using where
1 row in set (0.00 sec)

[sql] view plain copy

  1. mysql> explain select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G

*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 798458
Extra: Using where
1 row in set (0.00 sec)
explain语句显示了SQL查询要处理的记录数目

* 试验创建索引后情况

[sql] view plain copy

  1. mysql> create index idx_of_c3 on no_part_tab (c3);

Query OK, 8000000 rows affected (1 min 18.08 sec)
Records: 8000000 Duplicates: 0 Warnings: 0

[sql] view plain copy

  1. mysql> create index idx_of_c3 on part_tab (c3);

Query OK, 8000000 rows affected (1 min 19.19 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
创建索引后的数据库文件大小列表:
2008-05-24 09:23 8,608 no_part_tab.frm
2008-05-24 09:24 255,999,996 no_part_tab.MYD
2008-05-24 09:24 81,611,776 no_part_tab.MYI
2008-05-24 09:25 0 part_tab#P#p0.MYD
2008-05-24 09:26 1,024 part_tab#P#p0.MYI
2008-05-24 09:26 25,550,656 part_tab#P#p1.MYD
2008-05-24 09:26 8,148,992 part_tab#P#p1.MYI
2008-05-24 09:26 25,620,192 part_tab#P#p10.MYD
2008-05-24 09:26 8,170,496 part_tab#P#p10.MYI
2008-05-24 09:25 0 part_tab#P#p11.MYD
2008-05-24 09:26 1,024 part_tab#P#p11.MYI
2008-05-24 09:26 25,656,512 part_tab#P#p2.MYD
2008-05-24 09:26 8,181,760 part_tab#P#p2.MYI
2008-05-24 09:26 25,586,880 part_tab#P#p3.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p3.MYI
2008-05-24 09:26 25,585,696 part_tab#P#p4.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p4.MYI
2008-05-24 09:26 25,585,216 part_tab#P#p5.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p5.MYI
2008-05-24 09:26 25,655,740 part_tab#P#p6.MYD
2008-05-24 09:26 8,181,760 part_tab#P#p6.MYI
2008-05-24 09:26 25,586,528 part_tab#P#p7.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p7.MYI
2008-05-24 09:26 25,586,752 part_tab#P#p8.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p8.MYI
2008-05-24 09:26 25,585,824 part_tab#P#p9.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p9.MYI
2008-05-24 09:25 8,608 part_tab.frm
2008-05-24 09:25 68 part_tab.par

* 再次测试SQL性能

[sql] view plain copy

  1. mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';

+----------+
| count(*) |
+----------+
| 795181 |
+----------+

1 row in set (2.42 sec) /* 为原来4.69 sec 的51%*/

重启mysql ( net stop mysql, net start mysql)后,查询时间降为0.89 sec,几乎与分区表相同。

[sql] view plain copy

  1. mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';

+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (0.86 sec)

* 更进一步的试验
** 增加日期范围

[sql] view plain copy

  1. mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';

+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (5.42 sec)

[sql] view plain copy

  1. mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';

+----------+
| count(*) |
+----------+
| 2396524 |
+----------+

1 row in set (2.63 sec)

** 增加未索引字段查询

[sql] view plain copy

  1. mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date

  2. '1996-12-31' and c2='hello';

+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.75 sec)

[sql] view plain copy

  1. mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1996-12-31' and c2='hello';

+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (11.52 sec)


= 初步结论 =
* 分区和未分区占用文件空间大致相同 (数据和索引文件)
* 如果查询语句中有未建立索引字段,分区时间远远优于未分区时间
* 如果查询语句中字段建立了索引,分区和未分区的差别缩小,分区略优于未分区。


= 最终结论 =
* 对于大数据量,建议使用分区功能。
* 去除不必要的字段
* 根据手册, 增加myisam_max_sort_file_size 会增加分区性能

[分区命令详解]

= 分区例子 =
* RANGE 类型

[sql] view plain copy

  1. CREATE TABLE users (

  2. uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

  3. name VARCHAR(30) NOT NULL DEFAULT '',

  4. email VARCHAR(30) NOT NULL DEFAULT ''

  5. )

  6. PARTITION BY RANGE (uid) (

  7. PARTITION p0 VALUES LESS THAN (3000000)

  8. DATA DIRECTORY = '/data0/data'

  9. INDEX DIRECTORY = '/data1/idx',

  10. PARTITION p1 VALUES LESS THAN (6000000)

  11. DATA DIRECTORY = '/data2/data'

  12. INDEX DIRECTORY = '/data3/idx',

  13. PARTITION p2 VALUES LESS THAN (9000000)

  14. DATA DIRECTORY = '/data4/data'

  15. INDEX DIRECTORY = '/data5/idx',

  16. PARTITION p3 VALUES LESS THAN MAXVALUE DATA DIRECTORY = '/data6/data'

  17. INDEX DIRECTORY = '/data7/idx'

  18. );

在这里,将用户表分成4个分区,以每300万条记录为界限,每个分区都有自己独立的数据、索引文件的存放目录,与此同时,这些目录所在的物理磁盘分区可能也都是完全独立的,可以提高磁盘IO吞吐量。

* LIST 类型

[sql] view plain copy

  1. CREATE TABLE category (

  2. cid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

  3. name VARCHAR(30) NOT NULL DEFAULT ''

  4. )

  5. PARTITION BY LIST (cid) (

  6. PARTITION p0 VALUES IN (0,4,8,12)

  7. DATA DIRECTORY = '/data0/data'

  8. INDEX DIRECTORY = '/data1/idx',

  9. PARTITION p1 VALUES IN (1,5,9,13)

  10. DATA DIRECTORY = '/data2/data'

  11. INDEX DIRECTORY = '/data3/idx',

  12. PARTITION p2 VALUES IN (2,6,10,14)

  13. DATA DIRECTORY = '/data4/data'

  14. INDEX DIRECTORY = '/data5/idx',

  15. PARTITION p3 VALUES IN (3,7,11,15)

  16. DATA DIRECTORY = '/data6/data'

  17. INDEX DIRECTORY = '/data7/idx'

  18. );

分成4个区,数据文件和索引文件单独存放。

* HASH 类型

[sql] view plain copy

  1. CREATE TABLE users (

  2. uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

  3. name VARCHAR(30) NOT NULL DEFAULT '',

  4. email VARCHAR(30) NOT NULL DEFAULT ''

  5. )

  6. PARTITION BY HASH (uid) PARTITIONS 4 (

  7. PARTITION p0

  8. DATA DIRECTORY = '/data0/data'

  9. INDEX DIRECTORY = '/data1/idx',

  10. PARTITION p1

  11. DATA DIRECTORY = '/data2/data'

  12. INDEX DIRECTORY = '/data3/idx',

  13. PARTITION p2

  14. DATA DIRECTORY = '/data4/data'

  15. INDEX DIRECTORY = '/data5/idx',

  16. PARTITION p3

  17. DATA DIRECTORY = '/data6/data'

  18. INDEX DIRECTORY = '/data7/idx'

  19. );

分成4个区,数据文件和索引文件单独存放。

例子:

[sql] view plain copy

  1. CREATE TABLE ti2 (id INT, amount DECIMAL(7,2), tr_date DATE)

  2. ENGINE=myisam

  3. PARTITION BY HASH( MONTH(tr_date) )

  4. PARTITIONS 6;

  5. CREATE PROCEDURE load_ti2()

  6. begin

  7. declare v int default 0;

  8. while v < 80000

  9. do

  10. insert into ti2

  11. values (v,'3.14',adddate('1995-01-01',(rand(v)*3652) mod 365));

  12. set v = v + 1;

  13. end while;

  14. end

  15. //

* KEY 类型

[sql] view plain copy

  1. CREATE TABLE users (

  2. uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

  3. name VARCHAR(30) NOT NULL DEFAULT '',

  4. email VARCHAR(30) NOT NULL DEFAULT ''

  5. )

  6. PARTITION BY KEY (uid) PARTITIONS 4 (

  7. PARTITION p0

  8. DATA DIRECTORY = '/data0/data'

  9. INDEX DIRECTORY = '/data1/idx',

  10. PARTITION p1

  11. DATA DIRECTORY = '/data2/data'

  12. INDEX DIRECTORY = '/data3/idx',

  13. PARTITION p2

  14. DATA DIRECTORY = '/data4/data'

  15. INDEX DIRECTORY = '/data5/idx',

  16. PARTITION p3

  17. DATA DIRECTORY = '/data6/data'

  18. INDEX DIRECTORY = '/data7/idx'

  19. );

分成4个区,数据文件和索引文件单独存放。

* 子分区
子分区是针对 RANGE/LIST 类型的分区表中每个分区的再次分割。再次分割可以是 HASH/KEY 等类型。例如:

[sql] view plain copy

  1. CREATE TABLE users (

  2. uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

  3. name VARCHAR(30) NOT NULL DEFAULT '',

  4. email VARCHAR(30) NOT NULL DEFAULT ''

  5. )

  6. PARTITION BY RANGE (uid) SUBPARTITION BY HASH (uid % 4) SUBPARTITIONS 2(

  7. PARTITION p0 VALUES LESS THAN (3000000)

  8. DATA DIRECTORY = '/data0/data'

  9. INDEX DIRECTORY = '/data1/idx',

  10. PARTITION p1 VALUES LESS THAN (6000000)

  11. DATA DIRECTORY = '/data2/data'

  12. INDEX DIRECTORY = '/data3/idx'

  13. );

对 RANGE 分区再次进行子分区划分,子分区采用 HASH 类型。
或者

[sql] view plain copy

  1. CREATE TABLE users (

  2. uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

  3. name VARCHAR(30) NOT NULL DEFAULT '',

  4. email VARCHAR(30) NOT NULL DEFAULT ''

  5. )

  6. PARTITION BY RANGE (uid) SUBPARTITION BY KEY(uid) SUBPARTITIONS 2(

  7. PARTITION p0 VALUES LESS THAN (3000000)

  8. DATA DIRECTORY = '/data0/data'

  9. INDEX DIRECTORY = '/data1/idx',

  10. PARTITION p1 VALUES LESS THAN (6000000)

  11. DATA DIRECTORY = '/data2/data'

  12. INDEX DIRECTORY = '/data3/idx'

  13. );

对 RANGE 分区再次进行子分区划分,子分区采用 KEY 类型。

= 分区管理 =

* 删除分区

[sql] view plain copy

  1. ALERT TABLE users DROP PARTITION p0;

删除分区 p0。

* 重建分区
o RANGE 分区重建

[sql] view plain copy

  1. ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000));

将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。
o LIST 分区重建

[sql] view plain copy

  1. ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));

将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。
o HASH/KEY 分区重建

[sql] view plain copy

  1. ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2;

用 REORGANIZE 方式重建分区的数量变成2,在这里数量只能减少不能增加。想要增加可以用 ADD PARTITION 方法。
* 新增分区
o 新增 RANGE 分区

[sql] view plain copy

  1. ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (16,17,18,19)

  2. DATA DIRECTORY = '/data8/data'

  3. INDEX DIRECTORY = '/data9/idx');

新增一个RANGE分区。
o 新增 HASH/KEY 分区

[sql] view plain copy

  1. ALTER TABLE users ADD PARTITION PARTITIONS 8;

将分区总数扩展到8个。

[ 给已有的表加上分区 ]

[sql] view plain copy

  1. alter table results partition by RANGE (month(ttime))

  2. (PARTITION p0 VALUES LESS THAN (1),

  3. PARTITION p1 VALUES LESS THAN (2) , PARTITION p2 VALUES LESS THAN (3) ,

  4. PARTITION p3 VALUES LESS THAN (4) , PARTITION p4 VALUES LESS THAN (5) ,

  5. PARTITION p5 VALUES LESS THAN (6) , PARTITION p6 VALUES LESS THAN (7) ,

  6. PARTITION p7 VALUES LESS THAN (8) , PARTITION p8 VALUES LESS THAN (9) ,

  7. PARTITION p9 VALUES LESS THAN (10) , PARTITION p10 VALUES LESS THAN (11),

  8. PARTITION p11 VALUES LESS THAN (12),

  9. PARTITION P12 VALUES LESS THAN (13) );



默认分区限制分区字段必须是主键(PRIMARY KEY)的一部分,为了去除此
限制:
[方法1] 使用ID

[sql] view plain copy

  1. mysql> ALTER TABLE np_pk

  2. -> PARTITION BY HASH( TO_DAYS(added) )

  3. -> PARTITIONS 4;

ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

[sql] view plain copy

  1. mysql> ALTER TABLE np_pk

  2. -> PARTITION BY HASH(id)

  3. -> PARTITIONS 4;

Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

[方法2] 将原有PK去掉生成新PK

[sql] view plain copy

  1. mysql> alter table results drop PRIMARY KEY;

Query OK, 5374850 rows affected (7 min 4.05 sec)
Records: 5374850 Duplicates: 0 Warnings: 0

[sql] view plain copy

  1. mysql> alter table results add PRIMARY KEY(id, ttime);

Query OK, 5374850 rows affected (6 min 14.86 sec)

Records: 5374850 Duplicates: 0 Warnings: 0

关于如何深入解析MySQL分区Partition功能就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

0