千家信息网

mongodb aggregate mapReduce and group

发表于:2025-01-24 作者:千家信息网编辑
千家信息网最后更新 2025年01月24日,AggregateMongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果,类似sql语句中的 count(*)语法如下:db.collection
千家信息网最后更新 2025年01月24日mongodb aggregate mapReduce and group

Aggregate

MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果,类似sql语句中的 count(*)

语法如下:

db.collection.aggregate()

db.collection.aggregate(pipeline,options)

db.runCommand({

aggregate: "",

pipeline: [ , <...> ],

explain: ,

allowDiskUse: ,

cursor:

})


在使用aggregate实现聚合操作之前,我们首先来认识下几个常用的聚合操作符。

$project::可以对结果集中的键 重命名,控制键是否显示,对列进行计算。

$match: 过滤结果集,只输出符合条件的文档。

$skip: 在显示结果的时候跳过前几行并返回余下的文档。

$sort: 对即将显示的结果集排序

$limit: 控制结果集的大小

$unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。

$geoNear:输出接近某一地理位置的有序文档。

$group: 分组,聚合,求和,平均数,最大值,最小值,第一个,最后一个,等


表达式 描述 实例

$sum 计算总和 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])

$avg 计算平均值 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$avg : "$likes"}}}])

$min 获取集合中所有文档对应值得最小值 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$min : "$likes"}}}])

$max 获取集合中所有文档对应值得最大值 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$max : "$likes"}}}])

$push 在结果文档中插入值到一个数组中 db.mycol.aggregate([{$group : {_id : "$by_user", url : {$push: "$url"}}}])

$addToSet在结果文档中插入值到一个数组中,但不创建副本 db.mycol.aggregate([{$group : {_id : "$by_user", url : {$addToSet : "$url"}}}])

$first 根据资源文档的排序获取第一个文档数据 db.mycol.aggregate([{$group : {_id : "$by_user", first_url : {$first : "$url"}}}])

$last 根据资源文档的排序获取最后一个文档数据 db.mycol.aggregate([{$group : {_id : "$by_user", last_url : {$last : "$url"}}}])


实例:

db.createCollection("emp")

db.emp.insert({_id:1,"ename":"tom","age":25,"department":"Sales","salary":6000})

db.emp.insert({_id:2,"ename":"eric","age":24,"department":"HR","salary":4500})

db.emp.insert({_id:3,"ename":"robin","age":30,"department":"Sales","salary":8000})

db.emp.insert({_id:4,"ename":"jack","age":28,"department":"Development","salary":8000})

db.emp.insert({_id:5,"ename":"Mark","age":22,"department":"Development","salary":6500})

db.emp.insert({_id:6,"ename":"marry","age":23,"department":"Planning","salary":5000})

db.emp.insert({_id:7,"ename":"hellen","age":32,"department":"HR","salary":6000})

db.emp.insert({_id:8,"ename":"sarah","age":24,"department":"Development","salary":7000})

> use companyswitched to db company> db.emp.aggregate(... {$group:{_id:"$department",dpct:{$sum:1}}}... ){ "_id" : "Development", "dpct" : 3 }{ "_id" : "HR", "dpct" : 2 }{ "_id" : "Planning", "dpct" : 1 }{ "_id" : "Sales", "dpct" : 2 }> db.emp.aggregate(... {$group:{_id:"$department",salct:{$sum:"$salary"},salavg:{$avg:"$salary"}}}... ){ "_id" : "Development", "salct" : 21500, "salavg" : 7166.666666666667 }{ "_id" : "HR", "salct" : 10500, "salavg" : 5250 }{ "_id" : "Planning", "salct" : 5000, "salavg" : 5000 }{ "_id" : "Sales", "salct" : 14000, "salavg" : 7000 }> db.emp.aggregate(... {$match:{age:{$lt:25}}}... ){ "_id" : 2, "ename" : "eric", "age" : 24, "department" : "HR", "salary" : 4500 }{ "_id" : 5, "ename" : "Mark", "age" : 22, "department" : "Development", "salary" : 6500 }{ "_id" : 6, "ename" : "marry", "age" : 23, "department" : "Planning", "salary" : 5000 }{ "_id" : 8, "ename" : "sarah", "age" : 24, "department" : "Development", "salary" : 7000 }> db.emp.aggregate(... {$match:{age:{$gt:25}}},... {$group:{_id:"$department",salct:{$sum:"$salary"},salavg:{$avg:"$salary"}}}... ){ "_id" : "HR", "salct" : 6000, "salavg" : 6000 }{ "_id" : "Development", "salct" : 8000, "salavg" : 8000 }{ "_id" : "Sales", "salct" : 8000, "salavg" : 8000 }> db.emp.aggregate(... {$group:{_id:"$department",salct:{$sum:"$salary"},salavg:{$avg:"$salary"}}},... {$match:{salavg:{$gt:6000}}}... ){ "_id" : "Development", "salct" : 21500, "salavg" : 7166.666666666667 }{ "_id" : "Sales", "salct" : 14000, "salavg" : 7000 }>> db.emp.aggregate(... {$sort:{age:1}},{$limit:3}... ){ "_id" : 5, "ename" : "Mark", "age" : 22, "department" : "Development", "salary" : 6500 }{ "_id" : 6, "ename" : "marry", "age" : 23, "department" : "Planning", "salary" : 5000 }{ "_id" : 2, "ename" : "eric", "age" : 24, "department" : "HR", "salary" : 4500 }> db.emp.aggregate( {$sort:{age:-1}},{$limit:3} ){ "_id" : 7, "ename" : "hellen", "age" : 32, "department" : "HR", "salary" : 6000 }{ "_id" : 3, "ename" : "robin", "age" : 30, "department" : "Sales", "salary" : 8000 }{ "_id" : 4, "ename" : "jack", "age" : 28, "department" : "Development", "salary" : 8000 }> db.emp.aggregate( {$sort:{age:-1}},{$skip:4} ){ "_id" : 2, "ename" : "eric", "age" : 24, "department" : "HR", "salary" : 4500 }{ "_id" : 8, "ename" : "sarah", "age" : 24, "department" : "Development", "salary" : 7000 }{ "_id" : 6, "ename" : "marry", "age" : 23, "department" : "Planning", "salary" : 5000 }{ "_id" : 5, "ename" : "Mark", "age" : 22, "department" : "Development", "salary" : 6500 }>> db.emp.aggregate( {$project:{"姓名":"$ename","年龄":"$age","部门":"$department","工资":"$salary",_id:0}}){ "姓名" : "tom", "年龄" : 25, "部门" : "Sales", "工资" : 6000 }{ "姓名" : "eric", "年龄" : 24, "部门" : "HR", "工资" : 4500 }{ "姓名" : "robin", "年龄" : 30, "部门" : "Sales", "工资" : 8000 }{ "姓名" : "jack", "年龄" : 28, "部门" : "Development", "工资" : 8000 }{ "姓名" : "Mark", "年龄" : 22, "部门" : "Development", "工资" : 6500 }{ "姓名" : "marry", "年龄" : 23, "部门" : "Planning", "工资" : 5000 }{ "姓名" : "hellen", "年龄" : 32, "部门" : "HR", "工资" : 6000 }{ "姓名" : "sarah", "年龄" : 24, "部门" : "Development", "工资" : 7000 }> db.emp.aggregate( {$project:{"姓名":"$ename","年龄":"$age","部门":"$department","工资":"$salary",_id:0}},{$match:{"工资":{$gt:6000}}}){ "姓名" : "robin", "年龄" : 30, "部门" : "Sales", "工资" : 8000 }{ "姓名" : "jack", "年龄" : 28, "部门" : "Development", "工资" : 8000 }{ "姓名" : "Mark", "年龄" : 22, "部门" : "Development", "工资" : 6500 }{ "姓名" : "sarah", "年龄" : 24, "部门" : "Development", "工资" : 7000 }>


Map Reduce

Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)

MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。

以下是MapReduce基本语法

>db.collection.mapReduce(

function() {emit(key,value);}, //map 函数

function(key,values) {return reduceFunction}, //reduce 函数

{

out: collection,

query: document,

sort: document,

limit: number

}

)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, key value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

map :映射函数 (生成键值对序列,作为 reduce 函数参数)

reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。

out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)

query 一个筛选条件,只有满足条件的文档才会调用map函数。(querylimitsort可以随意组合)

sortlimit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制

limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)


> db.emp.mapReduce( function() { emit(this.department,1); }, function(key,values) { return Array.sum(values) }, { out:"depart_summary" } ).find(){ "_id" : "Development", "value" : 3 }{ "_id" : "HR", "value" : 2 }{ "_id" : "Planning", "value" : 1 }{ "_id" : "Sales", "value" : 2 }    利用内置的sum函数返回每个部门的人数> db.emp.mapReduce( function() { emit(this.department,this.salary); }, function(key,values) {  return Array.avg(values) }, { out:"depart_summary" } ).find(){ "_id" : "Development", "value" : 7166.666666666667 }{ "_id" : "HR", "value" : 5250 }{ "_id" : "Planning", "value" : 5000 }{ "_id" : "Sales", "value" : 7000 }    利用内置的avg函数返回每个部门的工资平均数> db.emp.mapReduce( function() { emit(this.department,this.salary); }, function(key,values) {  return Array.avg(values).toFixed(2) }, { out:"depart_summary" } ).find(){ "_id" : "Development", "value" : "7166.67" }{ "_id" : "HR", "value" : "5250.00" }{ "_id" : "Planning", "value" : 5000 }{ "_id" : "Sales", "value" : "7000.00" }>    保留两位小数> db.emp.mapReduce( function() { emit(this.department,this.salary); }, function(key,values) {  return Array.sum(values) }, { out:"depart_summary" } ).find(){ "_id" : "Development", "value" : 21500 }{ "_id" : "HR", "value" : 10500 }{ "_id" : "Planning", "value" : 5000 }{ "_id" : "Sales", "value" : 14000 }>  利用内置的sum函数返回每个部门的工资总和> db.emp.mapReduce( function() { emit(this.department,{count:1}); }, function(key,values) { var sum=0; values.forEach(function(val){sum+=val.count}); return sum; }, { out:"depart_summary" } ).find(){ "_id" : "Development", "value" : 3 }{ "_id" : "HR", "value" : 2 }{ "_id" : "Planning", "value" : { "count" : 1 } }{ "_id" : "Sales", "value" : 2 }>  手工计算每个部门的员工总数> db.emp.mapReduce( function() { emit(this.department,{salct:this.salary,count:1}); }, function(key,values) { var res={salct:0,sum:0}; values.forEach(function(val){res.sum+=val.count;res.salct+=val.salct}); return res; }, { out:"depart_summary" } ).find(){ "_id" : "Development", "value" : { "salct" : 21500, "sum" : 3 } }{ "_id" : "HR", "value" : { "salct" : 10500, "sum" : 2 } }{ "_id" : "Planning", "value" : { "salct" : 5000, "count" : 1 } }{ "_id" : "Sales", "value" : { "salct" : 14000, "sum" : 2 } }>  手工计算每个部门的员工总数和工资总数> db.emp.mapReduce( function() { emit(this.department,{salct:this.salary,count:1}); }, function(key,values) { var res={salct:0,sum:0}; values.forEach(function(val){res.sum+=val.count;res.salct+=val.salct}); return res.salct/res.sum; }, { out:"depart_summary" } ).find(){ "_id" : "Development", "value" : 7166.666666666667 }{ "_id" : "HR", "value" : 5250 }{ "_id" : "Planning", "value" : { "salct" : 5000, "count" : 1 } }{ "_id" : "Sales", "value" : 7000 }>  手工计算每个部门的工资平均值> db.emp.mapReduce( function() { emit(this.department,this.salary); }, function(key,values) {  return Array.avg(values) }, { out:"depart_summary" } ).find({value:{$gt:5000}}){ "_id" : "Development", "value" : 7166.666666666667 }{ "_id" : "HR", "value" : 5250 }{ "_id" : "Sales", "value" : 7000 }    将分组计算后的值进行过滤显示,只显示工资平均数大于5000的部门> db.emp.mapReduce( function() { emit(this.department,this.salary); }, function(key,values) {  return Array.avg(values) }, { out:"depart_summary" } ).find({value:{$gt:5000}}).sort({value:1}){ "_id" : "HR", "value" : 5250 }{ "_id" : "Sales", "value" : 7000 }{ "_id" : "Development", "value" : 7166.666666666667 }     将分组计算后的值进行排序,默认为升序> db.emp.mapReduce( function() { emit(this.department,this.salary); }, function(key,values) {  return Array.avg(values) }, { out:"depart_summary" } ).find({value:{$gt:5000}}).sort({value:-1}){ "_id" : "Development", "value" : 7166.666666666667 }{ "_id" : "Sales", "value" : 7000 }{ "_id" : "HR", "value" : 5250 }>    将分组计算后的值进行排序,手工指定降序> db.emp.mapReduce( function() { emit(this.department,this.salary); }, function(key,values) {  return Array.avg(values) }, { out:"depart_summary" } ).find({value:{$gt:5000}}).sort({value:-1}).limit(2){ "_id" : "Development", "value" : 7166.666666666667 }{ "_id" : "Sales", "value" : 7000 }>    将分组计算后的值进行降序排序后,取其中的两个值 > db.emp.mapReduce( function() { emit(this.department,{count:1}); }, function(key,values) { var sum=0; values.forEach(function(val){sum+=val.count}); return sum; }, { out:"depart_summary",query:{age:{$gt:25}} } ).find(){ "_id" : "Development", "value" : { "count" : 1 } }{ "_id" : "HR", "value" : { "count" : 1 } }{ "_id" : "Sales", "value" : { "count" : 1 } }>    分组前过滤数据,然后再分组计算> db.emp.mapReduce( function() { emit(this.department,{count:1}); }, function(key,values) { var sum=0; values.forEach(function(val){sum+=val.count}); return sum; }, { out:"depart_summary",query:{age:{$gt:22}},sort:{age:1} } ).find(){ "_id" : "Development", "value" : 2 }{ "_id" : "HR", "value" : 2 }{ "_id" : "Planning", "value" : { "count" : 1 } }{ "_id" : "Sales", "value" : 2 }>   分组前过滤数据,并排序,然后再分组计算 (本示例无意义)



Group

基本语法如下:

db.runCommand({group:{

ns:集合名称,

key:分组的键对象,

initial:初始化累加器,

$reduce:组分解器,

condition:条件,

finalize:组完成器}})

分组首先会按照key进行分组,每组的每个文档全要执行$reduce方法,该方法接收2 个参数:一个是组内本条记录,一个是累加器数据

实例:

按照部门分组,计算每个部门的工资总和,如下所示:

> db.runCommand(... {group:{ns:"emp",key:{"department":true},initial:{salct:0},... $reduce:function(oriDoc,prev){ prev.salct+=oriDoc.salary}... }}... ){"waitedMS" : NumberLong(0),"retval" : [{"department" : "Sales","salct" : 14000},{"department" : "HR","salct" : 10500},{"department" : "Development","salct" : 21500},{"department" : "Planning","salct" : 5000}],"count" : NumberLong(8),"keys" : NumberLong(4),"ok" : 1}> 统计每个部门的员工总量和工资总和,如下所示:> db.runCommand( {group:{ns:"emp",key:{"department":true},initial:{salct:0,count:0}, $reduce:function(oriDoc,prev){ prev.salct+=oriDoc.salary;prev.count+=1} }} ){"waitedMS" : NumberLong(0),"retval" : [{"department" : "Sales","salct" : 14000,"count" : 2},{"department" : "HR","salct" : 10500,"count" : 2},{"department" : "Development","salct" : 21500,"count" : 3},{"department" : "Planning","salct" : 5000,"count" : 1}],"count" : NumberLong(8),"keys" : NumberLong(4),"ok" : 1}> 统计每个部门的员工总量、工资总和及平均值,如下所示:> db.runCommand( {group:{ns:"emp",key:{"department":true},initial:{salct:0,count:0,avg:0}, $reduce:function(oriDoc,prev){ prev.salct+=oriDoc.salary;prev.count+=1; prev.avg=(prev.salct/prev.count).toFixed(2) } }} ){"waitedMS" : NumberLong(0),"retval" : [{"department" : "Sales","salct" : 14000,"count" : 2,"avg" : "7000.00"},{"department" : "HR","salct" : 10500,"count" : 2,"avg" : "5250.00"},{"department" : "Development","salct" : 21500,"count" : 3,"avg" : "7166.67"},{"department" : "Planning","salct" : 5000,"count" : 1,"avg" : "5000.00"}],"count" : NumberLong(8),"keys" : NumberLong(4),"ok" : 1}> 统计每个部门的最高工资是多少,如下所示:> db.runCommand( {group:{ns:"emp",key:{"department":true},initial:{salct:0}, $reduce:function(oriDoc,prev){ if(oriDoc.salary>prev.salct){prev.salct=oriDoc.salary}} }} ){"waitedMS" : NumberLong(0),"retval" : [{"department" : "Sales","salct" : 8000},{"department" : "HR","salct" : 6000},{"department" : "Development","salct" : 8000},{"department" : "Planning","salct" : 5000}],"count" : NumberLong(8),"keys" : NumberLong(4),"ok" : 1}> 统计每个部门的最高工资,并对结果过滤,只显示大于5000的部门,如下所示:> db.runCommand( {group:{ns:"emp",key:{"department":true},initial:{salct:0}, $reduce:function(oriDoc,prev){ if(oriDoc.salary>prev.salct){prev.salct=oriDoc.salary}},condition:{salary:{$gt:5000}} }} ){"waitedMS" : NumberLong(0),"retval" : [{"department" : "Sales","salct" : 8000},{"department" : "Development","salct" : 8000},{"department" : "HR","salct" : 6000}],"count" : NumberLong(6),"keys" : NumberLong(3),"ok" : 1}> 将统计后的结果加上描述,如下所示:> db.runCommand( {group:{ns:"emp",key:{"department":true},initial:{salct:0},...  $reduce:function(oriDoc,prev){ if(oriDoc.salary>prev.salct){prev.salct=oriDoc.salary}},... condition:{salary:{$gt:5000}},... finalize:function(prev){prev.salct="Department of the highest salary is "+prev.salct}... }}){"waitedMS" : NumberLong(0),"retval" : [{"department" : "Sales","salct" : "Department of the highest salary is 8000"},{"department" : "Development","salct" : "Department of the highest salary is 8000"},{"department" : "HR","salct" : "Department of the highest salary is 6000"}],"count" : NumberLong(6),"keys" : NumberLong(3),"ok" : 1}>用函数格式化分组的键:如果集合中出现键Department和department同时存在,那么分组有点麻烦,解决方法如下:> db.emp.insert({... "_id":9,"ename":"sophie","age":28,"Department":"HR","salary":18000... })WriteResult({ "nInserted" : 1 })> db.emp.find(){ "_id" : 1, "ename" : "tom", "age" : 25, "department" : "Sales", "salary" : 6000 }{ "_id" : 2, "ename" : "eric", "age" : 24, "department" : "HR", "salary" : 4500 }{ "_id" : 3, "ename" : "robin", "age" : 30, "department" : "Sales", "salary" : 8000 }{ "_id" : 4, "ename" : "jack", "age" : 28, "department" : "Development", "salary" : 8000 }{ "_id" : 5, "ename" : "Mark", "age" : 22, "department" : "Development", "salary" : 6500 }{ "_id" : 6, "ename" : "marry", "age" : 23, "department" : "Planning", "salary" : 5000 }{ "_id" : 7, "ename" : "hellen", "age" : 32, "department" : "HR", "salary" : 6000 }{ "_id" : 8, "ename" : "sarah", "age" : 24, "department" : "Development", "salary" : 7000 }{ "_id" : 9, "ename" : "sophie", "age" : 28, "Department" : "HR", "salary" : 18000 }>> db.runCommand( {group:{ns:"emp",... $keyf:function(oriDoc){if(oriDoc.Department){return{department:oriDoc.Department}}else{return{department:oriDoc.department}}},... initial:{salct:0},... $reduce:function(oriDoc,prev){ if(oriDoc.salary>prev.salct){prev.salct=oriDoc.salary}},... condition:{salary:{$gt:5000}},... finalize:function(prev){prev.salct="Department of the highest salary is "+prev.salct}... }} ){"waitedMS" : NumberLong(0),"retval" : [{"department" : "Sales","salct" : "Department of the highest salary is 8000"},{"department" : "Development","salct" : "Department of the highest salary is 8000"},{"department" : "HR","salct" : "Department of the highest salary is 18000"}],"count" : NumberLong(7),"keys" : NumberLong(3),"ok" : 1}>


0