千家信息网

Hive数据如何导入导出mysql

发表于:2025-01-21 作者:千家信息网编辑
千家信息网最后更新 2025年01月21日,这篇文章给大家分享的是有关Hive数据如何导入导出mysql的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。Hive定位:ETL(数据仓库)工具将数据从来源端经过抽取(ext
千家信息网最后更新 2025年01月21日Hive数据如何导入导出mysql

这篇文章给大家分享的是有关Hive数据如何导入导出mysql的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

Hive定位:ETL(数据仓库)工具
将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的工具,如像:kettle

DML

批量插入/批量导入
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
注:filepath可以是hdfs路径或者是S3路径,如hdfs://namenode:9000/user/hive/project/data1
1.从本地文件导入到表
load data local inpath 'test.txt' into table test;
2.从hdfs导入到表
load data inpath '/home/test/add.txt' into table test;
3.从表查询中导入到表
insert into table test select id, name, tel from test;
4.将查询数据导入到多个表
from source_table
insert into table test select id, name, tel from dest1_table select src.* where src.id < 100
insert into table test select id, name, tel from dest2_table select src.* where src.id < 100
insert into table test select id, name, tel from dest3_table select src.* where src.id < 100;
5.建表时导入
create table test4 as select id, name, tel from test;
指定分隔符导出数据
insert overwrite local directory '/home/hadoop/export_hive'
row format delimited
fields terminated by '\t'
select * from test;
删除/清空
1.删除table1中不符合条件的数据
insert overwrite table table1
select * from table1 where XXXX;
2.清空表
insert overwrite table t_table1
select * from t_table1 where 1=0;
3.截断表(注:不能截断外部表)
truncate table table_name;
4.删除hdfs对应的表数据达到清空表(表结构依然存在)
hdfs dfs -rmr /user/hive/warehouse/test

注:1和2本质是覆写表来实现清除数据
delete 与 update
在hive中默认不支持事务,因此默认不支持delete与update,如果需要支持必须在hive-site.xml中配置打开

DDL

库/表/索引/视图/分区/分桶

数据库

列出/创建/修改/删除/查看信息
1.列出所有数据库
show databases;
2.创建数据库
create database test;
3.删除
drop database test;

处于安全原因,直接drop有数据的数据库会报错,此时需要cascade关键字忽略报错删除
drop database if exists test cascade;
4.查看数据库信息
describe database test;

列出/创建/修改/删除/查看信息
1.列出所有表

当前数据库的所有表
show tables;

指定数据库的所有表
show tables in db_name;

支持正则
show tables '.*s';
2.创建表
create table test
(id int,
a string
)
ROW FORMAT DELIMITED 行分割
FIELDS TERMINATED BY ',' 字段分隔符
LINES TERMINATED BY '\n' 行分隔符
STORED AS TEXTFILE; 作为文本存储
创建基于正则切分行字段的表
add jar ../build/contrib/hive_contrib.jar;

CREATE TABLE apachelog (
host STRING,
identity STRING,
user STRING,
time STRING,
request STRING,
status STRING,
size STRING,
referer STRING,
agent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|//[[^//]]*//]) ([^ /"]*|/"[^/"]*/") (-|[0-9]*) (-|[0-9]*)(?: ([^ /"]*|/"[^/"]*/") ([^ /"]*|/"[^/"]*/"))?",
"output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s"
)
STORED AS TEXTFILE;
3.修改
加一个新列
ALTER TABLE test ADD COLUMNS (new_col2 INT COMMENT 'a comment');

改表名
ALTER TABLE old_name RENAME TO new_name;
4.删除
drop table test;
5.查看信息

显示列信息
desc test;

显示详细表信息
desc formatted test;

索引

创建索引
CREATE INDEX index_name
ON TABLE base_table_name (col_name, ...)
AS 'index.handler.class.name'

如:DROP INDEX index_name ON table_name

重建索引
ALTER INDEX index_name ON table_name [PARTITION (...)] REBUILD

如:alter index index1_index_test on index_test rebuild;

删除索引
DROP INDEX index_name ON table_name

列出索引
show index on index_test;

视图

CREATE VIEW [IF NOT EXISTS] view_name [ (column_name [COMMENT column_comment], ...) ][COMMENT view_comment][TBLPROPERTIES (property_name = property_value, ...)] AS SELECT

注:hive只支持逻辑视图,不支持物化视图
?增加视图
?如果没有提供表名,视图列的名字将由定义的SELECT表达式自动生成
?如果修改基本表的属性,视图中不会体现,无效查询将会失败
?视图是只读的,不能用LOAD/INSERT/ALTER
?删除视图 DROP VIEW view_name

分区(重点)

列出/创建/修改/删除
1.列出一个表的所有分区
show partitions test;
2.创建分区表
create table test
(id int,
a string,
)
partitioned by (b string,c int)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;
3.对现有表添加分区
ALTER TABLE test ADD IF NOT EXISTS
PARTITION (year = 2017) LOCATION '/hiveuser/hive/warehouse/data_zh.db/data_zh/2017.txt';
4.删除分区
ALTER TABLE test DROP IF EXISTS PARTITION(year =2017);
5.加载数据到分区表
LOAD DATA INPATH '/data/2017.txt' INTO TABLE test PARTITION(year=2017);
6.未分区表数据导入分区表
insert overwrite table part_table partition (YEAR,MONTH) select * from no_part_table;
7.动态分区指令
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
#set hive.enforce.bucketing = true;

开启动态分区后导入数据时可以省略指定分区的步骤
LOAD DATA INPATH '/data/2017.txt' INTO TABLE test PARTITION(year);

分桶

CREATE TABLE bucketed_user (id INT) name STRING)
CLUSTERED BY (id) INTO 4 BUCKETS;
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
把表(或者分区)组织成桶(Bucket)有两个理由:
(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。

感谢各位的阅读!关于"Hive数据如何导入导出mysql"这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

数据 视图 数据库 查询 信息 索引 支持 两个 分区表 相同 分隔符 结构 处理 内容 动态 字段 工具 更多 正则 篇文章 数据库的安全要保护哪些东西 数据库安全各自的含义是什么 生产安全数据库录入 数据库的安全性及管理 数据库安全策略包含哪些 海淀数据库安全审计系统 建立农村房屋安全信息数据库 易用的数据库客户端支持安全管理 连接数据库失败ssl安全错误 数据库的锁怎样保障安全 网络安全责任保险条例 云南省网络安全员竞赛 幼儿园大班网络安全教育总结 b站数据库起火 腾讯笔试数据库 网络安全手抄报难复杂 我身边的网络安全宣传手抄报 金山区电子网络技术怎么样 玉溪互联网科技价格 驻马店社交电商软件开发 文明重启怎么创自己的服务器 借阅管理数据库er图 网络安全和云架构哪个好 白银网络安全工程师方向 中国文献检索数据库排名 汕尾通讯软件开发批发价 新网络安全法内外资企业 java存取数据库能力包是什么 华为高斯数据库net链接 网络安全公司排行及工资 泛在电力物联网网络安全项目 服务器端状态管理 网易我的世界最强大陆服务器 阿里国际数据库 济南市网络安全专家库申请条件 中国没有自己的专业软件开发 数据库中报表主体节 网络安全大赛活动 红帽杯网络安全大赛有哪些大学 网络安全和信息化职业有哪些
0