千家信息网

Python数据结构之有哪些经典的排序算法

发表于:2025-01-21 作者:千家信息网编辑
千家信息网最后更新 2025年01月21日,这篇文章主要讲解了"Python数据结构之有哪些经典的排序算法",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Python数据结构之有哪些经典的排序算法
千家信息网最后更新 2025年01月21日Python数据结构之有哪些经典的排序算法

这篇文章主要讲解了"Python数据结构之有哪些经典的排序算法",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Python数据结构之有哪些经典的排序算法"吧!

目录
  • 1、冒泡排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 2、选择排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 3、简单插入排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 4、希尔排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 5、归并排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 6、快速排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 7、堆排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 8、计数排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 9、桶排序

    • 算法演示

    • 算法步骤

    • 算法实现

  • 10、基数排序

    • 算法演示

    • 算法步骤

    • 算法实现

1、冒泡排序

--越小的元素会经由交换慢慢"浮"到数列的顶端

算法演示

算法步骤

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;

  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;

  • 针对所有的元素重复以上的步骤,除了最后一个;

  • 重复步骤1~3,直到排序完成。

算法实现

def bubbleSort(arr):    for i in range(1, len(arr)):        for j in range(0, len(arr)-i):            if arr[j] > arr[j+1]:                arr[j], arr[j + 1] = arr[j + 1], arr[j]    return arr

2、选择排序

-- 最小的出来排第一,第二小的出来排第二…

算法演示

算法步骤

  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。

  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

  • 重复第二步,直到所有元素均排序完毕。

算法实现

def selectionSort(arr):    for i in range(len(arr) - 1):        # 记录最小数的索引        minIndex = i        for j in range(i + 1, len(arr)):            if arr[j] < arr[minIndex]:                minIndex = j        # i 不是最小数时,将 i 和最小数进行交换        if i != minIndex:            arr[i], arr[minIndex] = arr[minIndex], arr[i]    return arr

3、简单插入排序

--通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法演示

算法步骤

  • 从第一个元素开始,该元素可以认为已经被排序;

  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;

  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;

  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;

  • 将新元素插入到该位置后;重复步骤2~5。

算法实现

def insertionSort(arr):    for i in range(len(arr)):        preIndex = i-1        current = arr[i]        while preIndex >= 0 and arr[preIndex] > current:            arr[preIndex+1] = arr[preIndex]            preIndex-=1        arr[preIndex+1] = current    return arr

4、希尔排序

--希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。

算法演示

算法步骤

  • 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

  • 按增量序列个数 k,对序列进行 k 趟排序;

  • 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

算法实现

def shellSort(arr):    import math    gap=1    while(gap < len(arr)/3):        gap = gap*3+1    while gap > 0:        for i in range(gap,len(arr)):            temp = arr[i]            j = i-gap            while j >=0 and arr[j] > temp:                arr[j+gap]=arr[j]                j-=gap            arr[j+gap] = temp        gap = math.floor(gap/3)    return arr

5、归并排序

--建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法演示

算法步骤

  • 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  • 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  • 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  • 重复步骤 3 直到某一指针达到序列尾;

  • 将另一序列剩下的所有元素直接复制到合并序列尾。

算法实现

def mergeSort(arr):    import math    if(len(arr)<2):        return arr    middle = math.floor(len(arr)/2)    left, right = arr[0:middle], arr[middle:]    return merge(mergeSort(left), mergeSort(right))def merge(left,right):    result = []    while left and right:        if left[0] <= right[0]:            result.append(left.pop(0))        else:            result.append(right.pop(0));    while left:        result.append(left.pop(0))    while right:        result.append(right.pop(0));    return result

6、快速排序

--快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。 快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

算法演示

算法步骤

  • 从数列中挑出一个元素,称为 "基准"(pivot);

  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

算法实现

def quickSort(arr, left=None, right=None):    left = 0 if not isinstance(left,(int, float)) else left    right = len(arr)-1 if not isinstance(right,(int, float)) else right    if left < right:        partitionIndex = partition(arr, left, right)        quickSort(arr, left, partitionIndex-1)        quickSort(arr, partitionIndex+1, right)    return arrdef partition(arr, left, right):    pivot = left    index = pivot+1    i = index    while  i <= right:        if arr[i] < arr[pivot]:            swap(arr, i, index)            index+=1        i+=1    swap(arr,pivot,index-1)    return index-1def swap(arr, i, j):    arr[i], arr[j] = arr[j], arr[i]

7、堆排序

--利用堆这种数据结构所设计的一种排序算法

算法演示

算法步骤

  • 创建一个堆 H[0……n-1];

  • 把堆首(最大值)和堆尾互换;

  • 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

  • 重复步骤 2,直到堆的尺寸为 1。

算法实现

def buildMaxHeap(arr):    import math    for i in range(math.floor(len(arr)/2),-1,-1):        heapify(arr,i)def heapify(arr, i):    left = 2*i+1    right = 2*i+2    largest = i    if left < arrLen and arr[left] > arr[largest]:        largest = left    if right < arrLen and arr[right] > arr[largest]:        largest = right    if largest != i:        swap(arr, i, largest)        heapify(arr, largest)def swap(arr, i, j):    arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):    global arrLen    arrLen = len(arr)    buildMaxHeap(arr)    for i in range(len(arr)-1,0,-1):        swap(arr,0,i)        arrLen -=1        heapify(arr, 0)    return arr

8、计数排序

--作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法演示

算法步骤

  • 找出待排序的数组中最大和最小的元素

  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项

  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)

  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

算法实现

def countingSort(arr, maxValue):    bucketLen = maxValue+1    bucket = [0]*bucketLen    sortedIndex =0    arrLen = len(arr)    for i in range(arrLen):        if not bucket[arr[i]]:            bucket[arr[i]]=0        bucket[arr[i]]+=1    for j in range(bucketLen):        while bucket[j]>0:            arr[sortedIndex] = j            sortedIndex+=1            bucket[j]-=1    return arr

9、桶排序

--桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

算法演示

算法步骤

  • 设置一个定量的数组当作空桶;

  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;

  • 对每个不是空的桶进行排序;

  • 从不是空的桶里把排好序的数据拼接起来。

算法实现

function bucketSort(arr, bucketSize) {    if (arr.length === 0) {      return arr;    }     var i;    var minValue = arr[0];    var maxValue = arr[0];    for (i = 1; i < arr.length; i++) {      if (arr[i] < minValue) {          minValue = arr[i];                // 输入数据的最小值      } else if (arr[i] > maxValue) {          maxValue = arr[i];                // 输入数据的最大值      }    }     // 桶的初始化    var DEFAULT_BUCKET_SIZE = 5;            // 设置桶的默认数量为5    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;      var buckets = new Array(bucketCount);    for (i = 0; i < buckets.length; i++) {        buckets[i] = [];    }     // 利用映射函数将数据分配到各个桶中    for (i = 0; i < arr.length; i++) {        buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);    }     arr.length = 0;    for (i = 0; i < buckets.length; i++) {        insertionSort(buckets[i]);                      // 对每个桶进行排序,这里使用了插入排序        for (var j = 0; j < buckets[i].length; j++) {            arr.push(buckets[i][j]);                             }    }     return arr;}

10、基数排序

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

算法演示

算法步骤

  • 取得数组中的最大数,并取得位数;

  • arr为原始数组,从最低位开始取每个位组成radix数组;

  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

算法实现

var counter = [];function radixSort(arr, maxDigit) {    var mod = 10;    var dev = 1;    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {        for(var j = 0; j < arr.length; j++) {            var bucket = parseInt((arr[j] % mod) / dev);            if(counter[bucket]==null) {                counter[bucket] = [];            }            counter[bucket].push(arr[j]);        }        var pos = 0;        for(var j = 0; j < counter.length; j++) {            var value = null;            if(counter[j]!=null) {                while ((value = counter[j].shift()) != null) {                      arr[pos++] = value;                }          }        }    }    return arr;}

感谢各位的阅读,以上就是"Python数据结构之有哪些经典的排序算法"的内容了,经过本文的学习后,相信大家对Python数据结构之有哪些经典的排序算法这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0