spark on k8s与spark on k8s operator的对比是怎样的
发表于:2025-01-23 作者:千家信息网编辑
千家信息网最后更新 2025年01月23日,这期内容当中小编将会给大家带来有关spark on k8s与spark on k8s operator的对比是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。对
千家信息网最后更新 2025年01月23日spark on k8s与spark on k8s operator的对比是怎样的
这期内容当中小编将会给大家带来有关spark on k8s与spark on k8s operator的对比是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
对于目前基于k8s的的spark应用,主要采用两种方式运行
spark原生支持的 spark on k8s
基于k8s的operator的 spark on k8s operator
前者是spark社区支持k8s这种资源管理框架而引入的k8s client的实现
后者是k8s社区为了支持spark而开发的一种operator
区别 | spark on k8s | spark on k8s operator |
---|---|---|
社区支持 | spark社区 | GoogleCloudPlatform非官方支持 |
版本要求 | spark>=2.3,Kubernetes>=1.6 | spark>2.3,Kubernetes>=1.13 |
安装 | 按照官网安装,需要k8s pod的create list edit delete权限,且需要自己编译源码进行镜像的构建,构建过程繁琐 | 需要k8s admin安装incubator/sparkoperator,需要pod create list edit delete的权限 |
使用 | 直接spark submit提交,如:下面code 1,支持client和cluster模式,spark on k8s | 通过yaml配置文件形式提交,支持client和cluster模式,提交如code2,具体参数参考spark operator configuration |
优点 | 符合sparker的方式进行任务提交,对于习惯了spark的使用者来说,使用起来更顺手 | k8s配置文件方式提交任务,复用性强 |
缺点 | 运行完后driver的资源不会自动释放 | 运行完后driver的资源不会自动释放 |
实现方式 | 对于spark提交方式来说,无论是client提交还是cluster提交,都是继承SparkApplication。以client提交,子类则是JavaMainApplication,该方式以反射运行,对于k8s任务来分析,clusterManager为KubernetesClusterManager,该方式和向yarn提交任务的方式没什么区别;以cluster方式提交,对于k8s任务来说,spark程序的入口为KubernetesClientApplication,client端会建立clusterIp为None的service,executor跟该service进行rpc,如任务的提交的交互,且会建立以driver-conf-map后缀的configMap,该configMap在建立spark driver pod的时候,以volumn挂载的形式被引用,而该文件的内容最终在driver提交任务的时候以--properties-file形式提交给spark driver,从而spark.driver.host等配置项就传输给了driver,与此同时也会建立以-hadoop-config为后缀的configMap,可是 k8s 镜像怎么区分是运行executor还是driver的呢?一切都在dockerfile(具体构建的时候根据hadoop和kerbeors环境的不一样进行区别配置)和entrypoint中,其中shell中是区分driver和executor的; | 采用k8s CRD Controller的机制,自定义CRD,根据operator SDK,监听对应的增删改查event,如监听到对应的CRD的创建事件,则根据对应yaml文件配置项,建立pod,进行spark任务的提交,具体的实现,可参考spark on k8s operator design,具体以cluster和client模式提交的原理和spark on k8s一致,因为镜像复用的是spark的官方镜像 |
code 1 ---bin/spark-submit \ --master k8s://https://192.168.202.231:6443 \ --deploy-mode cluster \ --name spark-pi \ --class org.apache.spark.examples.SparkPi \ --conf spark.executor.instances=2 \ --conf "spark.kubernetes.namespace=dev" \ --conf "spark.kubernetes.authenticate.driver.serviceAccountName=lijiahong" \ --conf "spark.kubernetes.container.image=harbor.k8s-test.uc.host.dxy/dev/spark-py:cdh-2.6.0-5.13.1" \ --conf "spark.kubernetes.container.image.pullSecrets=regsecret" \ --conf "spark.kubernetes.file.upload.path=hdfs:///tmp" \ --conf "spark.kubernetes.container.image.pullPolicy=Always" \ hdfs:///tmp/spark-examples_2.12-3.0.0.jar
code 2---apiVersion: "sparkoperator.k8s.io/v1beta2"kind: SparkApplicationmetadata: name: spark-pi namespace: devspec: type: Scala mode: cluster image: "gcr.io/spark-operator/spark:v3.0.0" imagePullPolicy: Always mainClass: org.apache.spark.examples.SparkPi mainApplicationFile: "local:///opt/spark/examples/jars/spark-examples_2.12-3.0.0.jar" sparkVersion: "3.0.0" restartPolicy: type: Never volumes: - name: "test-volume" hostPath: path: "/tmp" type: Directory driver: cores: 1 coreLimit: "1200m" memory: "512m" labels: version: 3.0.0 serviceAccount: lijiahong volumeMounts: - name: "test-volume" mountPath: "/tmp" executor: cores: 1 instances: 1 memory: "512m" labels: version: 3.0.0 volumeMounts: - name: "test-volume" mountPath: "/tmp"
上述就是小编为大家分享的spark on k8s与spark on k8s operator的对比是怎样的了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注行业资讯频道。
方式
任务
支持
运行
配置
文件
社区
镜像
内容
形式
时候
模式
资源
分析
后缀
权限
还是
参考
复用
一致
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
重生之互联网科技小说
淮安专业软件开发售后保障
进中信银行软件开发怎么样
vps服务器安全软件
根网科技有限公司是互联网
窗体查找数据库
河北省网络安全集成商电话
微网站服务器费用
小雨网络安全手抄报
计算机网络技术学习什么课程
计算机网络技术及其应用
赫兹软件开发有限责任公司
我国网络安全保护法是
山东c语言软件开发价位
聊城想学网络技术
埃森哲软件开发工程师定制版
数据库查询事务id
特抱抱娱播软件开发
数据库中查看表结构语句
海子网络安全吗
湖南天天向上 网络技术
数据库对应的操作系统
抖音服务器造价
网页服务器有什么区别
贵州浪潮服务器怎么样
网络安全悬镜
揭阳通讯软件开发市价
dz论坛安装数据库
软件开发资质证书有用吗
宿迁入柜陪护床软件开发