千家信息网

伪分布模式hadoop如何运行java源程序

发表于:2025-01-23 作者:千家信息网编辑
千家信息网最后更新 2025年01月23日,伪分布模式hadoop如何运行java源程序,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。写好源代码之后,首先要编译:
千家信息网最后更新 2025年01月23日伪分布模式hadoop如何运行java源程序

伪分布模式hadoop如何运行java源程序,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

写好源代码之后,首先要编译: javac -classpath /usr/local/hadoop/hadoop-core-1.2.1.jar:/usr/local/hadoop/lib/commons-cli-1.2.jar count.java -d org 在org目录下生成三个class文件: count.class count\ Map.class count\ Reduce.class 之后将三个class文件打包: jar -cvf count.jar -C org/ . 之后在hadoop根目录下生成count.jar文件 创建分布式文件夹,并把要分析的数据放入之中: bin/hadoop fs -mkdir input bin/hadoop fs --put ~/Downloads/Gowalla_totalCheckins.txt input (~/Downloads/Gowalla_totalCheckins.txt为我文件所在位置) 通过localhost:50070可以查看: 可以看到txt中的数据已经考到了input下。 接下来运行程序: bin/hadoop jar count.jar count input output 运行完之后会发现:生成一个output文件夹,其下有三个文件,输出的信息保存在part-r-00000中 文件内容:

196514 2020-07-24T13:45:06Z 53.3648119 -2.2723465833 145064 196514 2020-07-24T13:44:58Z 53.360511233 -2.276369017 1275991

196514 2020-07-24T13:44:46Z 53.3653895945 -2.2754087046 376497 196514 2020-07-24T13:44:38Z 53.3663709833 -2.2700764333 98503

196514 2020-07-24T13:44:26Z 53.3674087524 -2.2783813477 1043431

196514 2020-07-24T13:44:08Z 53.3675663377 -2.278631763 881734

196514 2020-07-24T13:43:18Z 53.3679640626 -2.2792943689 207763 196514 2020-07-24T13:41:10Z 53.364905 -2.270824 1042822

其中第一列为用户id ,第二列为登录时间,第三列是用户的纬度,第四列我为用户的经度,第五列为用户的地址id 本次程序是分析用户的登录时间,并分时间段进行统计。

源代码:

import java.io.IOException; import java.util.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class count { public static class Map extends Mapper {     // 实现map函数             public void map(Object key, Text value, Context context)throws IOException, InterruptedException {                 String line = value.toString();                          int k;                 StringTokenizer itr = new StringTokenizer(line);                 int i = 0;                 int hour = 0,minute = 0,second = 0;                         while (itr.hasMoreTokens()) {                         String token = itr.nextToken();                         i++;                         if(i == 2){                                 int indexOfT = token.indexOf('T');                                 int indexOfZ = token.indexOf('Z',indexOfT + 1);                                 String substr = token.substring(indexOfT + 1,indexOfZ);                                 int blank1 = substr.indexOf(':');                                 int blank2 = substr.indexOf(':',blank1 + 1);                                 hour =  Integer.parseInt(substr.substring(0,blank1),10);                                  minute = Integer.parseInt(substr.substring(blank1 + 1,blank2),10);                                 second = Integer.parseInt(substr.substring(blank2 + 1),10);                         }                         }                     k = (hour * 60 * 60 + minute * 60 + second) / (3600  * 4) ;                 context.write(new IntWritable( k ), new IntWritable(1));             } } public static class Reduce extends Reducer< IntWritable, IntWritable, IntWritable, IntWritable> {             // 实现reduce函数         public void reduce(IntWritable key, Iterable values, Context context)                     throws IOException, InterruptedException {                 int sum = 0;                                      for(IntWritableval : values){                         sum += val.get();                 }                 context.write( key, new IntWritable(sum));             } }        public static void main(String[] args) throws Exception {         Configuration conf = new Configuration();             String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();            if (otherArgs.length != 2) {                     System.err.println("Usage: Multiple Table Join  ");                     System.exit(2);             }             Job job = new Job(conf, "count");             job.setJarByClass(count.class);             // 设置Map和Reduce处理类             job.setMapperClass(Map.class);         job.setCombinerClass(Reduce.class);             job.setReducerClass(Reduce.class);             // 设置输出类型         job.setOutputKeyClass(IntWritable.class);             job.setOutputValueClass(IntWritable.class);             FileInputFormat.addInputPath(job, new Path(otherArgs[0]));             FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));             System.exit(job.waitForCompletion(true) ? 0 : 1); }    }

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。

0