千家信息网

DBLE分库分表实战

发表于:2025-01-25 作者:千家信息网编辑
千家信息网最后更新 2025年01月25日,环境: DBLE 2.19.03.0OS版本: CentOS Linux release 7.6.1810 (Core)IP: 192.168.20.10/24MySQL版本: MySQL-社区版-5
千家信息网最后更新 2025年01月25日DBLE分库分表实战

环境: DBLE 2.19.03.0

OS版本: CentOS Linux release 7.6.1810 (Core)

IP: 192.168.20.10/24

MySQL版本: MySQL-社区版-5.7.26




添加2个账号授权:

create user 'rw'@'%' identified by 'rw123456';

create user 'rd'@'%' identified by 'rd123456';

GRANT SELECT, INSERT, UPDATE, DELETE, CREATE,REFERENCES,CREATE TEMPORARY TABLES,INDEX ON *.* TO rw@'%' ;

GRANT SELECT ON *.* TO 'rd'@'%' ;



连接方式:

读写:

mysql -urw -prw123456 --port 8066 -h 192.168.20.10 testdb

只读:

mysql -urd -prd123456 --port 8066 -h 192.168.20.10 testdb

ddl专用:

mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb

管理账号:

mysql -uman1 -p654321 --port 9066 -h 192.168.20.10



解压DBLE:

tar xf dble-2.19.03.tar.gz /usr/local/

cd /usr/local

ln -s dble-2.19.03 dble


cd conf/


vim schema.xml 修改后的如下:

                    
select user()


vim rule.xml 修改后的内容如下:

                        id            rangeLong2                                    id            hashmod3                                                                                                                                                          open_id            hashStringmod3                        autopartition-long_t.txt        0                    3        1                    3        1        0:20      


[root@centos7 /usr/local/dble/conf ]# vim autopartition-long_t.txt # 增加一个路由规则文件

# range start-end ,data node index# K=1000,M=10000.# 范围:前开后闭 (开区间,闭区间]0-1M=01M-2M=12M-3M=2



vim server.xml 内容如下:

修改user部分为如下:             654321        true                        123456        testdb                        rw123456        testdb                rd123456        testdb        true    



然后, reload 下 dble , 进行测试


ddl专用:

mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb


去创建符合上面的要求的几个表,并写入数据测试:

## 测试range分区(testdb) > create table travelrecord (id bigint not null primary key,user_id varchar(100),traveldate DATE, fee decimal(10,2),days int) ENGINE=InnoDB DEFAULT CHARSET=utf8;(testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(10,'wang','2014-01-05',510,3);(testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(13000,'lee','2011-01-05',26.5,3);(testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(29800,'zhang','2018-01-05',23.3,3);(testdb) > select * from travelrecord ;+-------+---------+------------+--------+------+| id    | user_id | traveldate | fee    | days |+-------+---------+------------+--------+------+|    10 | wang    | 2014-01-05 | 510.00 |    3 || 13000 | lee     | 2011-01-05 |  26.50 |    3 || 29800 | zhang   | 2018-01-05 |  23.30 |    3 |+-------+---------+------------+--------+------+



## 测试全局表(testdb) > create table company(id int not null primary key,name varchar(100)); (testdb) > insert into company(id,name) values(1,'hp');(testdb) > insert into company(id,name) values(2,'ibm');(testdb) > insert into company(id,name) values(3,'oracle');(testdb) > select * from company ;+----+--------+| id | name   |+----+--------+|  1 | hp     ||  2 | ibm    ||  3 | oracle |+----+--------+3 rows in set (0.01 sec)多执行几次,你会看到三个分片上都插入了3条数据,因为company定义为全局表。(testdb) > explain insert into company(id,name) values(1,'hp');+-----------+----------+---------------------------------------------+| DATA_NODE | TYPE     | SQL/REF                    |+-----------+----------+---------------------------------------------+| dn1       | BASE SQL | insert into company(id,name) values(1,'hp') || dn2       | BASE SQL | insert into company(id,name) values(1,'hp') || dn3       | BASE SQL | insert into company(id,name) values(1,'hp') |+-----------+----------+---------------------------------------------+3 rows in set (0.00 sec)使用 explain select * from company ;   命令也可以看到随机分发到3个节点的。



## 测试hashmod分区create table hotnews (id bigint unsigned not null primary key ,title varchar(400) ,created_time datetime) ENGINE=InnoDB DEFAULT CHARSET=utf8;然后, 我们写个脚本,批量插入些数据,看看情况:for i in {1..1000}; do   mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb  -e "insert into hotnews(id,title,created_time) values($i,'one',now());"done然后,到后端的3个分片上看下数据量,大致如下,还是比较均匀的:(db1) > select count(*)  from db1.hotnews;+----------+| count(*) |+----------+|      333 |+----------+1 row in set (0.00 sec)(db1) > select count(*)  from db2.hotnews;+----------+| count(*) |+----------+|      334 |+----------+1 row in set (0.00 sec)(db1) > select count(*)  from db3.hotnews;+----------+| count(*) |+----------+|      333 |+----------+1 row in set (0.00 sec)



## hashStringmod分区CREATE TABLE `user_auth` (  `id` bigint unsigned NOT NULL AUTO_INCREMENT COMMENT '主键id',  `open_id` varchar(100) NOT NULL DEFAULT '' COMMENT '第三方授权id',  `union_id` varchar(100) NOT NULL DEFAULT '' COMMENT '授权的关联id',  PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='用户AUTH信息表' ;#### 注意:实际生产环境的主键id需要由程序去保证唯一性(例如使用雪花算法)(testdb) > insert into user_auth (id,open_id,union_id) values(1,'331116828422393856','oy0IAj9mdPUr7bLMl879Jp37eV3Y');(testdb) > insert into user_auth (id,open_id,union_id) values(2,'341170994247204864','oy0IA3Yj9mdPUr7bLMl879Jp37eV');(testdb) > insert into user_auth (id,open_id,union_id) values(3,'330414325695332352','oy0IAj9mdPU3Yr7bLMl879Jp37eV');(testdb) > insert into user_auth (id,open_id,union_id) values(4,'328588424011591680','oy0IAj9mdPUr7bLMl8Jp37e79V');(testdb) > insert into user_auth (id,open_id,union_id) values(5,'330414325695332352','oy0IA3Yj9mdPUr7p37ebLMl879JV3Y');(testdb) > insert into user_auth (id,open_id,union_id) values(6,'341172222247211111','oy0IAj9bLMl879Jp37eV3YmdPUr7');(testdb) > insert into user_auth (id,open_id,union_id) values(7,'341173334247755464','Jp37eoy0IAj9mdPUr73YbLMl879V');(testdb) > select id,open_id,union_id from user_auth order by id asc ;+----+--------------------+--------------------------------+| id | open_id            | union_id                       |+----+--------------------+--------------------------------+|  1 | 331116828422393856 | oy0IAj9mdPUr7bLMl879Jp37eV3Y   ||  2 | 341170994247204864 | oy0IA3Yj9mdPUr7bLMl879Jp37eV   ||  3 | 330414325695332352 | oy0IAj9mdPU3Yr7bLMl879Jp37eV   ||  4 | 328588424011591680 | oy0IAj9mdPUr7bLMl8Jp37e79V     ||  5 | 330414325695332352 | oy0IA3Yj9mdPUr7p37ebLMl879JV3Y ||  6 | 341172222247211111 | oy0IAj9bLMl879Jp37eV3YmdPUr7   ||  7 | 341173334247755464 | Jp37eoy0IAj9mdPUr73YbLMl879V   |+----+--------------------+--------------------------------+7 rows in set (0.00 sec)(testdb) > explain select id,open_id,union_id from user_auth where open_id = '341173334247755464' ;+-----------+----------+--------------------------------------------------------------------------------+| DATA_NODE | TYPE     | SQL/REF                                                                        |+-----------+----------+--------------------------------------------------------------------------------+| dn2       | BASE SQL | select id,open_id,union_id from user_auth where open_id = '341173334247755464' |+-----------+----------+--------------------------------------------------------------------------------+1 row in set (0.00 sec)(testdb) > explain select id,open_id,union_id from user_auth where open_id = '331116828422393856' ;+-----------+----------+--------------------------------------------------------------------------------+| DATA_NODE | TYPE     | SQL/REF                                                                        |+-----------+----------+--------------------------------------------------------------------------------+| dn1       | BASE SQL | select id,open_id,union_id from user_auth where open_id = '331116828422393856' |+-----------+----------+--------------------------------------------------------------------------------+1 row in set (0.00 sec)(testdb) > explain select id,open_id,union_id from user_auth where open_id = '328588424011591680' ;+-----------+----------+--------------------------------------------------------------------------------+| DATA_NODE | TYPE     | SQL/REF                                                                        |+-----------+----------+--------------------------------------------------------------------------------+| dn3       | BASE SQL | select id,open_id,union_id from user_auth where open_id = '328588424011591680' |+-----------+----------+--------------------------------------------------------------------------------+1 row in set (0.00 sec)



############################################################################

上面就是几种常用的分区了, 另外还有种 date类型按时间分区的可能在日志表的场景下也常用些。


date类型分区的实验:

先去后端的db上创建物理的库:

create database userdb1 ;create database userdb2 ;create database userdb3 ;create database userdb4 ;create database userdb5 ;create database userdb6 ;create database userdb7 ;create database userdb8 ;create database userdb9 ;create database userdb10 ;create database userdb11 ;create database userdb12 ;create database userdb13 ;


修改后的 schema.xml 类似如下:

                                                                                    select user()                                    




然后,到 rule.xml中添加规则:

            addData        partbymonth-user                yyyy-MM-dd            2018-01-01                 30          0    




(testdb) > create table if not exists user (addData date, dbname varchar(32),username varchar(32),province varchar(16),age int(3));(testdb) > insert into user (addData,dbname,username,age) values ('2015-01-01',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2016-02-01',database(),'user1',12);(testdb) > explain  insert into user (addData,dbname,username,age) values ('2017-03-01',database(),'user1',12);+-----------+----------+--------------------------------------------------------------------------------------------------+| DATA_NODE | TYPE     | SQL/REF                                                                                          |+-----------+----------+--------------------------------------------------------------------------------------------------+| user_dn1  | BASE SQL | INSERT INTO user (addData, dbname, username, age) VALUES ('2017-03-01', DATABASE(), 'user1', 12) |+-----------+----------+--------------------------------------------------------------------------------------------------+(testdb) > insert into user (addData,dbname,username,age) values ('2017-03-01',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-01',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-11',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-21',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-25',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-30',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-05-01',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-05-03',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-05-05',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-06-21',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2018-07-30',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2019-01-01',database(),'user1',12);(testdb) > insert into user (addData,dbname,username,age) values ('2019-06-01',database(),'user1',12);ERROR 1064 (HY000): can't find any valid data node :user -> ADDDATA -> 2019-06-01因此,我们需要提前人工把分片加好 并做好可用分区的监控,不然会造成无法写入数据的事故出现。(testdb) > select * from user order by addData asc ;+------------+----------+----------+----------+------+| addData    | dbname   | username | province | age  |+------------+----------+----------+----------+------+| 2015-01-01 | userdb1  | user1    | NULL     |   12 || 2016-02-01 | userdb1  | user1    | NULL     |   12 || 2017-03-01 | userdb1  | user1    | NULL     |   12 || 2018-04-01 | userdb4  | user1    | NULL     |   12 || 2018-04-11 | userdb4  | user1    | NULL     |   12 || 2018-04-21 | userdb4  | user1    | NULL     |   12 || 2018-04-25 | userdb4  | user1    | NULL     |   12 || 2018-04-30 | userdb4  | user1    | NULL     |   12 || 2018-05-01 | userdb5  | user1    | NULL     |   12 || 2018-05-03 | userdb5  | user1    | NULL     |   12 || 2018-05-05 | userdb5  | user1    | NULL     |   12 || 2018-06-21 | userdb6  | user1    | NULL     |   12 || 2018-07-30 | userdb8  | user1    | NULL     |   12 || 2019-01-01 | userdb13 | user1    | NULL     |   12 |+------------+----------+----------+----------+------+14 rows in set (0.02 sec)查询测试:(testdb) > explain select * from user where addData between '2018-04-01' and '2018-04-30' ;+-----------+----------+------------------------------------------------------------------------+| DATA_NODE | TYPE     | SQL/REF                                                                |+-----------+----------+------------------------------------------------------------------------+| user_dn4  | BASE SQL | select * from user where addData between '2018-04-01' and '2018-04-30' |+-----------+----------+------------------------------------------------------------------------+1 row in set (0.00 sec)(testdb) > select * from user where addData between '2018-04-01' and '2018-04-30' ;+------------+---------+----------+----------+------+| addData    | dbname  | username | province | age  |+------------+---------+----------+----------+------+| 2018-04-01 | userdb4 | user1    | NULL     |   12 || 2018-04-11 | userdb4 | user1    | NULL     |   12 || 2018-04-21 | userdb4 | user1    | NULL     |   12 || 2018-04-25 | userdb4 | user1    | NULL     |   12 || 2018-04-30 | userdb4 | user1    | NULL     |   12 |+------------+---------+----------+----------+------+5 rows in set (0.01 sec)(testdb) > explain select * from user where addData between '2018-04-01' and '2018-05-30' order by addData asc ;+-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| DATA_NODE       | TYPE          | SQL/REF                                                                                                                                                                                 |+-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| user_dn4_0      | BASE SQL      | select `user`.`addData`,`user`.`dbname`,`user`.`username`,`user`.`province`,`user`.`age` from  `user` where addData BETWEEN '2018-04-01' AND '2018-05-30' ORDER BY `user`.`addData` ASC || user_dn5_0      | BASE SQL      | select `user`.`addData`,`user`.`dbname`,`user`.`username`,`user`.`province`,`user`.`age` from  `user` where addData BETWEEN '2018-04-01' AND '2018-05-30' ORDER BY `user`.`addData` ASC || merge_1         | MERGE         | user_dn4_0; user_dn5_0                                                                                                                                                                  || shuffle_field_1 | SHUFFLE_FIELD | merge_1                                                                                                                                                                                 |+-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+4 rows in set (0.00 sec)(testdb) > select * from user where addData between '2018-04-01' and '2018-05-30' order by addData asc ;+------------+---------+----------+----------+------+| addData    | dbname  | username | province | age  |+------------+---------+----------+----------+------+| 2018-04-01 | userdb4 | user1    | NULL     |   12 || 2018-04-11 | userdb4 | user1    | NULL     |   12 || 2018-04-21 | userdb4 | user1    | NULL     |   12 || 2018-04-25 | userdb4 | user1    | NULL     |   12 || 2018-04-30 | userdb4 | user1    | NULL     |   12 || 2018-05-01 | userdb5 | user1    | NULL     |   12 || 2018-05-03 | userdb5 | user1    | NULL     |   12 || 2018-05-05 | userdb5 | user1    | NULL     |   12 |+------------+---------+----------+----------+------+8 rows in set (0.01 sec)



date类型的可用分区的监控(脚本的原理同样适用于其他类型的分区):

简单的做法就是定期执行一个explain的insert插入测试, 如果有ERROR关键字就告警出来

一个简单的脚本如下:# 提前60天预警DAYS=$(date -d 60days  +%F)echo $DAYSif mysql -urw -prw123456 --port 8066 -h 192.168.20.10 testdb 2>/dev/null -e "explain insert into user (addData,dbname,username,age) values (\"$DAYS\",database(),'user1',12);" ; then     echo "当前可用分片数量处于安全状态"else    echo "需要加新的分片了"fi




date类型加新的分片的方法:

1、修改schema.xml 加上新的分片的配置信息,修改后大致这样:                            
select user() 2、重载配置文件reload @@config_all ;3、去后端创建对应的物理库 create database userdb14;.....这里省略其它的建库语句.......create database userdb23;4、通过dble再次下发下建表命令create table if not exists user (addData date, dbname varchar(32),username varchar(32),province varchar(16),age int(3));5、插入数据测试(testdb) > explain insert into user (addData,dbname,username,age) values ('2019-11-01',database(),'user1',12);+-----------+----------+--------------------------------------------------------------------------------------------------+| DATA_NODE | TYPE | SQL/REF |+-----------+----------+--------------------------------------------------------------------------------------------------+| user_dn23 | BASE SQL | INSERT INTO user (addData, dbname, username, age) VALUES ('2019-11-01', DATABASE(), 'user1', 12) |+-----------+----------+--------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)(testdb) > explain insert into user (addData,dbname,username,age) values ('2019-12-01',database(),'user1',12);ERROR 1064 (HY000): can't find any valid data node :user -> ADDDATA -> 2019-12-01






######################################################################################################



ER 表 (互联网场景下用多表JOIN的不多,因此ER分片规则不太常用到,但是需要大致的了解):

下面的内容大篇幅参考: https://blog.csdn.net/zhanglei_16/article/details/50779929

1:ER分片关系简介

有一类业务,例如订单(ORDER)跟订单明细表(ORDER_DETAIL),明细表会依赖订单单,就是该会存在表的主从关系,

这类似业务的切分可以抽象出合适的切分规则,比如根据用户ID切分,其它相关的表都依赖于用户ID,再或者根据订单ID进行切分,

总之部分业务总会可以抽象出父子关系的表。这类表适用于ER分片表,子表的记录与所关联的父表记录存放在同一个数据分片上,

避免数据Join跨库操作,以order与order_detail例子为例,schema.xml中定义合适的分片配置,order,order_detail 根据order_id

迕行数据切分,保证相同order_id的数据分到同一个分片上,在进行数据插入操作时,Mycat会获取order所在的分片,

然后将order_detail也插入到order所在的分片


2:父表按照主键ID分片,字表的分片字段与主表ID关联,配置为ER分片

2.1:在schema.xml添加如下配置配置文件修改




在rule.xml里面设定分片规则:

id

hashmod3

3

1



然后, reload 下 dble




2.2 先建表, order 和 order_detail 表,有主外键关系

mysql> explain CREATE TABLE order1 (id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) ENGINE=InnoDB DEFAULT CHARSET=utf8;

+-----------+-----------------------------------------------------------------------------------------------------+

| DATA_NODE | SQL |

+-----------+-----------------------------------------------------------------------------------------------------+

| dn1 | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |

| dn2 | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |

| dn3 | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |

+-----------+-----------------------------------------------------------------------------------------------------+

3 rows in set (0.02 sec)


mysql> CREATE TABLE order1(id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.35 sec)



mysql> CREATE TABLE order_detail(id INT AUTO_INCREMENT PRIMARY KEY, order_id INT,ord_status CHAR(1),address VARCHAR(128),create_time DATETIME,CONSTRAINT FK_ORDid FOREIGN KEY (order_id) REFERENCES order1 (id)) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.44 sec)


3.3 录入数据:

mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW());

+-----------+----------------------------------------------------------------+

| DATA_NODE | SQL |

+-----------+----------------------------------------------------------------+

| dn2 | INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW()) |

+-----------+----------------------------------------------------------------+

1 row in set (0.03 sec)


录入数据,一组组录入,涉及到外键关系:

第一组北京的订单

mysql> INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW());

Query OK, 1 row affected (0.05 sec)


mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (1,1,'1','test data of order1(id=1,BJ001) ',NOW());


第二组上海的订单:

mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW());

+-----------+----------------------------------------------------------------+

| DATA_NODE | SQL |

+-----------+----------------------------------------------------------------+

| dn1 | INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW()) |

+-----------+----------------------------------------------------------------+

1 row in set (0.02 sec)


mysql> INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW());

Query OK, 1 row affected (0.04 sec)


mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (3,3,'1','test data of order1(id=3,SHH001)',NOW());

Query OK, 1 row affected (0.06 sec)


第三组广州的订单:

mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW());

+-----------+----------------------------------------------------------------+

| DATA_NODE | SQL |

+-----------+----------------------------------------------------------------+

| dn2 | INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW()) |

+-----------+----------------------------------------------------------------+

1 row in set (0.00 sec)


mysql> INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW());

Query OK, 1 row affected (0.06 sec)


mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (4,4,'1','test data of order1(id=4,GZH004) ',NOW());

Query OK, 1 row affected (0.05 sec)


第四组 武汉的订单,这里故意将order_id设置成4,看看效果,是否随id为4的广州的那组分片:

mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(5,'WUHAN005',NOW());

+-----------+------------------------------------------------------------------+

| DATA_NODE | SQL |

+-----------+------------------------------------------------------------------+

| dn3 | INSERT INTO order1(id,sn,create_time) VALUES(5,'WUHAN005',NOW()) |

+-----------+------------------------------------------------------------------+

1 row in set (0.01 sec)



mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(6,'WUHAN006',NOW());

Query OK, 1 row affected (0.03 sec)



mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (6,4,'1','test data of order1(id=6,WUHAN006) ',NOW());

Query OK, 1 row affected (0.05 sec)




通过DBLE,查看下数据写入的情况:

(testdb) > select * from order1;

+----+--------+---------------------+

| id | sn | create_time |

+----+--------+---------------------+

| 1 | BJ0001 | 2019-08-31 23:05:36 |

| 4 | GZH004 | 2019-08-31 23:06:57 |

| 3 | SHH001 | 2019-08-31 23:06:43 |

+----+--------+---------------------+

3 rows in set (0.01 sec)


(testdb) > select * from order_detail ;

+----+----------+------------+--------------------------------------+---------------------+

| id | order_id | ord_status | address | create_time |

+----+----------+------------+--------------------------------------+---------------------+

| 1 | 1 | 1 | test data of ORDER1(ID=1,BJ001) | 2019-08-31 23:06:17 |

| 4 | 4 | 1 | test data of ORDER1(ID=4,GZH004) | 2019-08-31 23:07:01 |

| 6 | 4 | 1 | test data of ORDER1(ID=6,WUHAN006) | 2019-08-31 23:07:23 |

| 3 | 3 | 1 | test data of ORDER1(ID=3,SHH001) | 2019-08-31 23:06:47 |

+----+----------+------------+--------------------------------------+---------------------+

4 rows in set (0.01 sec)



直连后端的db1,看下数据情况 (db2 和 db3 上面的数据查看,使用同样的方法);

((none)) > select * from db1.order1;

+----+--------+---------------------+

| id | sn | create_time |

+----+--------+---------------------+

| 3 | SHH001 | 2019-08-31 23:06:43 |

+----+--------+---------------------+

1 row in set (0.00 sec)


((none)) > select * from db1.order_detail;

+----+----------+------------+----------------------------------+---------------------+

| id | order_id | ord_status | address | create_time |

+----+----------+------------+----------------------------------+---------------------+

| 3 | 3 | 1 | test data of ORDER1(ID=3,SHH001) | 2019-08-31 23:06:47 |

+----+----------+------------+----------------------------------+---------------------+

1 row in set (0.00 sec)




2.6 走DBLE,模拟下业务的查询:

(testdb) > explain select t1.*,t2.* from order1 t1,order_detail t2 where t2.ord_status='1' and t2.id=1 and t1.id=t2.order_id;

+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

| DATA_NODE | TYPE | SQL/REF |

+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

| dn1_0 | BASE SQL | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from `order1` `t1` join `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |

| dn2_0 | BASE SQL | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from `order1` `t1` join `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |

| dn3_0 | BASE SQL | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from `order1` `t1` join `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |

| merge_1 | MERGE | dn1_0; dn2_0; dn3_0 |

| shuffle_field_1 | SHUFFLE_FIELD | merge_1 |

+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

5 rows in set (0.00 sec)



(testdb) > SELECT

t1.*,

t2.*

FROM

order1 t1,

order_detail t2

WHERE t2.ord_status = '1'

AND t2.id = 1

AND t1.id = t2.order_id ;

+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+

| id | sn | create_time | id | order_id | ord_status | address | create_time |

+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+

| 1 | BJ0001 | 2019-08-31 23:05:36 | 1 | 1 | 1 | test data of ORDER1(ID=1,BJ001) | 2019-08-31 23:06:17 |

+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+

1 row in set (0.00 sec)




2.7 总结:当子表与父表的关联字段正好是父表的分片字段时,子表直接根据父表规则进行分片,在数据录入的时候子表直接放在父表的分片上面,在进行关联查询join的时候,走的是父表的路由。


【重要】其它的总结:

当子表与父表的关联字段不是父表的分片字段时,必须通过查找对应的父表记录来确认子表所在分片,如果找不到则会抛出错误,在join查询的时候,路由走的是所有分片节点!!!!






















0