千家信息网

如何使用Python Matplotlib绘制条形图

发表于:2024-11-12 作者:千家信息网编辑
千家信息网最后更新 2024年11月12日,这篇文章给大家分享的是有关如何使用Python Matplotlib绘制条形图的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。条形图条形图具有丰富的表现形式,常见的类型包括单
千家信息网最后更新 2024年11月12日如何使用Python Matplotlib绘制条形图

这篇文章给大家分享的是有关如何使用Python Matplotlib绘制条形图的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

条形图

条形图具有丰富的表现形式,常见的类型包括单组条形图,多组条形图,堆积条形图和对称条形图等。

单组条形图

条形图的每种表现形式都可以绘制成垂直条形图或水平条形图,以单组条形图的两种绘制方式为例。

垂直条形图

import matplotlib.pyplot as pltdata = [10., 20., 5., 15.]plt.bar(range(len(data)), data)plt.show()

Tips:plt.plot()函数的作用是:接收两个参数,包括每个条形的x坐标和每个条行的高度。

通过可选参数width,pyplot.bar()提供了一种控制条形图中条状宽度的方法:

import matplotlib.pyplot as pltdata = [10., 20., 5., 15.]plt.bar(range(len(data)), data, width=0.5)plt.show()

水平条形图

如果更喜欢水平条形外观,就可以使用plt.barh()函数,在用法方面与plt.bar()基本相同,但是修改条形宽度(或者在水平条形图中应该称为高度)的参数需要使用height:

import matplotlib.pyplot as pltdata = [10., 20., 5., 15.]plt.barh(range(len(data)), data, height=0.5)plt.show()

多组条形图

当需要比较不同年份相应季度的销量等此类需求时,我们可能需要多组条形图。

import numpy as npimport matplotlib.pyplot as pltdata = [[10., 20., 30., 20.],[40., 25., 53., 18.],[6., 22., 52., 19.]]x = np.arange(4)plt.bar(x + 0.00, data[0], color = 'b', width = 0.25)plt.bar(x + 0.25, data[1], color = 'g', width = 0.25)plt.bar(x + 0.50, data[2], color = 'r', width = 0.25)plt.show()

堆积条形图

通过使用plt.bar()函数中的可选参数,可以绘制堆积条形图。

import matplotlib.pyplot as plty_1 = [3., 25., 45., 22.]y_2 = [6., 25., 50., 25.]x = range(4)plt.bar(x, y_1, color = 'b')plt.bar(x, y_2, color = 'r', bottom = y_1)plt.show()

Tips:plt.bar()函数的可选参数bottom允许指定条形图的起始值。

可以结合for循环,利用延迟呈现机制堆叠更多的条形:

import numpy as npimport matplotlib.pyplot as pltdata = np.array([[5., 30., 45., 22.], [5., 25., 50., 20.], [1., 2., 1., 1.]])x = np.arange(data.shape[1])for i in range(data.shape[0]):    plt.bar(x, data[i], bottom = np.sum(data[:i], axis = 0))plt.show()

对称条形图

一个简单且有用的技巧是对称绘制两个条形图。例如想要绘制不同年龄段的男性与女性数量的对比:

import numpy as npimport matplotlib.pyplot as pltw_pop = np.array([5., 30., 45., 22.])m_pop = np.array( [5., 25., 50., 20.])x = np.arange(4)plt.barh(x, w_pop)plt.barh(x, -m_pop)plt.show()

图中女性人口的条形图照常绘制。然而,男性人口的条形图的条形图的条形图向左延伸,而不是向右延伸。可以使用数据的负值来快速实现对称条形图的绘制。

感谢各位的阅读!关于"如何使用Python Matplotlib绘制条形图"这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

0