千家信息网

怎么解决pytorch训练神经网络爆内存

发表于:2024-11-27 作者:千家信息网编辑
千家信息网最后更新 2024年11月27日,小编给大家分享一下怎么解决pytorch训练神经网络爆内存,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!在建立人工神经网络
千家信息网最后更新 2024年11月27日怎么解决pytorch训练神经网络爆内存

小编给大家分享一下怎么解决pytorch训练神经网络爆内存,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

在建立人工神经网络时整体的步骤主要有以下四步:

1、载入原始数据

2、构建具体神经网络

3、进行数据的训练

4、数据测试和验证

pytorch神经网络的数据载入,以MINIST书写字体的原始数据为例:

import torchimport matplotlib.pyplot as  pltdef plot_curve(data):    fig=plt.figure()    plt.plot(range(len(data)),data,color="blue")    plt.legend(["value"],loc="upper right")    plt.xlabel("step")    plt.ylabel("value")    plt.show() def plot_image(img,label,name):    fig=plt.figure()    for i in range(6):        plt.subplot(2,3,i+1)        plt.tight_layout()        plt.imshow(img[i][0]*0.3081+0.1307,cmap="gray",interpolation="none")        plt.title("{}:{}".format(name, label[i].item()))        plt.xticks([])        plt.yticks([])    plt.show()def one_hot(label,depth=10):    out=torch.zeros(label.size(0),depth)    idx=torch.LongTensor(label).view(-1,1)    out.scatter_(dim=1,index=idx,value=1)    return out batch_size=512import torchfrom torch import nn                         #完成神经网络的构建包from torch.nn import functional as F         #包含常用的函数包from torch import optim                      #优化工具包import torchvision                           #视觉工具包import  matplotlib.pyplot as pltfrom utils import plot_curve,plot_image,one_hot#step1 load dataset   加载数据包train_loader=torch.utils.data.DataLoader(    torchvision.datasets.MNIST("minist_data",train=True,download=True,transform=torchvision.transforms.Compose(        [torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,),(0.3081,))         ])),    batch_size=batch_size,shuffle=True)test_loader=torch.utils.data.DataLoader(    torchvision.datasets.MNIST("minist_data",train=True,download=False,transform=torchvision.transforms.Compose(        [torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,),(0.3081,))         ])),    batch_size=batch_size,shuffle=False)x,y=next(iter(train_loader))print(x.shape,y.shape)plot_image(x,y,"image")print(x)print(y)

以构建一个简单的回归问题的神经网络为例,

其具体的实现代码如下所示:

import torchimport torch.nn.functional as F  # 激励函数都在这 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)y = x.pow(2) + 0.2 * torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1) class Net(torch.nn.Module):  # 继承 torch 的 Module(固定)    def __init__(self, n_feature, n_hidden, n_output):  # 定义层的信息,n_feature多少个输入, n_hidden每层神经元, n_output多少个输出        super(Net, self).__init__()  # 继承 __init__ 功能(固定)        # 定义每层用什么样的形式        self.hidden = torch.nn.Linear(n_feature, n_hidden)  # 定义隐藏层,线性输出        self.predict = torch.nn.Linear(n_hidden, n_output)  # 定义输出层线性输出     def forward(self, x):  # x是输入信息就是data,同时也是 Module 中的 forward 功能,定义神经网络前向传递的过程,把__init__中的层信息一个一个的组合起来        # 正向传播输入值, 神经网络分析出输出值        x = F.relu(self.hidden(x))  # 定义激励函数(隐藏层的线性值)        x = self.predict(x)  # 输出层,输出值        return x  net = Net(n_feature=1, n_hidden=10, n_output=1) print(net)  # net 的结构"""Net (  (hidden): Linear (1 -> 10)  (predict): Linear (10 -> 1))"""# optimizer 是训练的工具optimizer = torch.optim.SGD(net.parameters(), lr=0.2)  # 传入 net 的所有参数, 学习率loss_func = torch.nn.MSELoss()  # 预测值和真实值的误差计算公式 (均方差) for t in range(100):  # 训练的步数100步    prediction = net(x)  # 喂给 net 训练数据 x, 每迭代一步,输出预测值     loss = loss_func(prediction, y)  # 计算两者的误差     # 优化步骤:    optimizer.zero_grad()  # 清空上一步的残余更新参数值    loss.backward()  # 误差反向传播, 计算参数更新值    optimizer.step()  # 将参数更新值施加到 net 的 parameters 上 import matplotlib.pyplot as plt plt.ion()  # 实时画图something about plotting for t in range(200):    prediction = net(x)  # input x and predict based on x     loss = loss_func(prediction, y)  # must be (1. nn output, 2. target)     optimizer.zero_grad()  # clear gradients for next train    loss.backward()  # backpropagation, compute gradients    optimizer.step()  # apply gradients     if t % 5 == 0:  # 每五步绘一次图        # plot and show learning process        plt.cla()        plt.scatter(x.data.numpy(), y.data.numpy())        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)        plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})        plt.pause(0.1) plt.ioff()plt.show()

以上是"怎么解决pytorch训练神经网络爆内存"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!

0