R语言的ssGSEA.r怎么使用
发表于:2025-01-18 作者:千家信息网编辑
千家信息网最后更新 2025年01月18日,本文小编为大家详细介绍"R语言的ssGSEA.r怎么使用",内容详细,步骤清晰,细节处理妥当,希望这篇"R语言的ssGSEA.r怎么使用"文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习
千家信息网最后更新 2025年01月18日R语言的ssGSEA.r怎么使用
本文小编为大家详细介绍"R语言的ssGSEA.r怎么使用",内容详细,步骤清晰,细节处理妥当,希望这篇"R语言的ssGSEA.r怎么使用"文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
ssGSEA.r 单样本基因集富集分析
使用方法:
$Rscript ../scripts/ssGSEA.r -husage: ../scripts/ssGSEA.r [-h] -i expset -g geneset [-o outdir] [-p prefix]ssGSEA免疫侵润分析optional arguments: -h, --help show this help message and exit -i expset, --expset expset input gene expression set matrix from RNA-seq data csv format [required] -g geneset, --geneset geneset input gene set database [required] -o outdir, --outdir outdir output file directory [default cwd] -p prefix, --prefix prefix output file name prefix [default demo]
参数说明:
-i 基因表达量 , 建议用TPM标准化之后的数据:
ID | TCGA-D7-A74A-01A-11R-A32D-31 | TCGA-BR-7704-01A-11R-2055-13 | TCGA-VQ-A91N-01A-11R-A414-31 | TCGA-CD-A4MH-01A-11R-A251-31 |
NUP50 | 18.65505 | 31.59232 | 28.23382 | 28.76485 |
CXCR4 | 64.85805 | 125.123 | 56.35244 | 69.98976 |
NT5E | 111.4818 | 69.8587 | 79.37382 | 25.05824 |
EFNA3 | 8.247857 | 42.03308 | 43.46432 | 26.66024 |
STC1 | 4.781111 | 21.36327 | 40.81077 | 19.51568 |
ZBTB7A | 95.51678 | 103.4768 | 158.3024 | 126.2677 |
CLDN9 | 1.187456 | 2.476138 | 0.366081 | 7.347344 |
-g 基因集 两列数据,第一列细胞类型,第二列为基因
CellType | Symbol |
B cells | MS4A1 |
B cells | TCL1A |
B cells | MS4A1 |
B cells | TCL1A |
B cells | HLA-DOB |
B cells | PNOC |
B cells | KIAA0125 |
B cells | CD19 |
B cells | CR2 |
B cells | IGHG1 |
B cells | FCRL2 |
B cells | BLK |
B cells | IGHG1 |
B cells | COCH |
B cells | OSBPL10 |
B cells | IGHA1 |
B cells | TNFRSF17 |
B cells | ABCB4 |
B cells | BLNK |
结果说明:
得到每一个样本的不同基因集中的NES值:
NES值:用最大值与最小值间的绝对差对ssGSEA分数进行标准化。
cell_type | TCGA-B7-A5TK-01A-12R-A36D-31 | TCGA-BR-7959-01A-11R-2343-13 | TCGA-IN-8462-01A-11R-2343-13 | TCGA-BR-A4CR-01A-11R-A24K-31 |
aDC | 0.612130511 | 0.452721422 | 0.434065 | 0.352635 |
B cells | 0.423322775 | 0.408870064 | 0.426612 | 0.413857 |
Blood vessels | 0.68102349 | 0.775438572 | 0.689433 | 0.577667 |
CD8 T cells | 0.675615385 | 0.650073242 | 0.629121 | 0.566048 |
Cytotoxic cells | 0.621056151 | 0.425217442 | 0.411617 | 0.3128 |
DC | 0.619838925 | 0.485055579 | 0.489101 | 0.266905 |
Eosinophils | 0.502784949 | 0.514938557 | 0.469541 | 0.488051 |
iDC | 0.531619756 | 0.49843721 | 0.530931 | 0.390699 |
Lymph vessels | 0.710842769 | 0.721323072 | 0.658391 | 0.500574 |
方法说明:
单样本基因集富集分析(single sample gene set enrichment analysis, ssGSEA),是GSEA方法的扩展,主要是针对单个样本无法做GSEA而设计。文章2009年发表于nature,题目为Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1。
首先对给定样本的基因表达值进行秩次标准化,然后利用经验累积分布函数计算富集分数(ES)。设给定基因集为G,包含基因数为NG,给定单个样本为S,表达谱包含基因数为N,N个基因按它们绝对表达值从高到低确定秩次。i 从1赋值到N,依此计算PGw和PNG。
读到这里,这篇"R语言的ssGSEA.r怎么使用"文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注行业资讯频道。
基因
样本
文章
语言
方法
标准
分析
富集
标准化
内容
分数
单个
数据
不同
妥当
最大
最小
使用方法
函数
参数
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
腾旅互联网科技有限公司招聘
rust怎么更新自建服务器
淘宝的数据库大小
欧盟网络安全工具
恢复数据库提示报错
南充软件开发参考价
深圳鼎伦互联网科技有限公司
数据库工程师技术栈
处理应用软件开发
国际服哪个服务器下载快
国家网络安全基地湖北项目
jar包连接hive数据库
vba数据库创建方法比较
win10 dhcp服务器错误
数据库服务启动灰色的
服务器想要安全
医周数据库连接失败
浙江智能化网络技术推荐咨询
猎人级残骸数据库
首届中国网络安全论坛
软件开发英文招聘广告
数据库自定义完整性是什么
公安机关网络安全部门
数据库通配符怎么搜索
服务器热管理传感器
温州智能软件开发创新服务
青岛百旗传媒网络技术有限公司
数据库结构变更记录
龙爱量子软件开发
银川软件开发技术排行榜