千家信息网

influencePlot()函数发现离群点杠杆点强影响点的示例分析

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,这期内容当中小编将会给大家带来有关influencePlot()函数发现离群点杠杆点强影响点的示例分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。lm()函数拟合
千家信息网最后更新 2025年01月20日influencePlot()函数发现离群点杠杆点强影响点的示例分析

这期内容当中小编将会给大家带来有关influencePlot()函数发现离群点杠杆点强影响点的示例分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

lm()函数拟合回归模型后,可以使用car包的influencePlot()函数观察和发现影响回归的异常值。

influencePlot()函数的特点是,它将我们关心的离群点、高杠杆值点、强影响点信息绘制在一张图中,读图的效率高。

假设我们基于lm()拟合了多元回归模型murder.step,influencePlot()函数将直接提取murder.step中的残差数据、样本量数据等绘制统计图形。

语法示范:

influencePlot(murder.step,id.method="identify",main="Influent Plot",sub="Circle size is proportional to Cook's distance")

文字结果:


给出具体的异常数据信息,包括学生会残差值、帽子值、库克距离值。

图形结果:


图的解读:

  • 纵坐标超过+2或小于-2的散点可被认为是离群点

  • 水平轴超过0.2或0.3的散点有高杠杆值

  • 圆圈大小与影响成比例,圆圈很大的点可能是对模型参数的估计造成的不成比例影响的强影响点


上述就是小编为大家分享的influencePlot()函数发现离群点杠杆点强影响点的示例分析了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注行业资讯频道。

0