千家信息网

如何进行python pandas中 inplace 参数的理解

发表于:2024-11-18 作者:千家信息网编辑
千家信息网最后更新 2024年11月18日,本篇文章给大家分享的是有关如何进行python pandas中 inplace 参数的理解,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
千家信息网最后更新 2024年11月18日如何进行python pandas中 inplace 参数的理解

本篇文章给大家分享的是有关如何进行python pandas中 inplace 参数的理解,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

这篇文章主要介绍了对python pandas中 inplace 参数的理解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

pandas 中 inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改

inplace = True:不创建新的对象,直接对原始对象进行修改;

inplace = False:对数据进行修改,创建并返回新的对象承载其修改结果。

默认是False,即创建新的对象进行修改,原对象不变,和深复制和浅复制有些类似。

例:

inplace=True情况:

import pandas as pdimport numpy as npdf=pd.DataFrame(np.random.randn(4,3),columns=["A","B","C"])data=df.drop(["A"],axis=1,inplace=True)print(df)print(data) >>      B     C0 0.472730 -0.6266851 0.065358 0.0313262 -0.318582 1.1233083 -0.097687 0.018820None

inplace=False情况:

df=pd.DataFrame(np.random.randn(4,3),columns=["A","B","C"])data=df.drop(["A"],axis=1,inplace=False)print(df)print(data) >>     A     B     C0 -0.731578 0.226483 0.9866561 0.075936 1.622889 1.7679672 -1.477780 -0.164374 -1.0255553 -0.645208 -0.847264 -0.744622     B     C0 0.226483 0.9866561 1.622889 1.7679672 -0.164374 -1.0255553 -0.847264 -0.744622

另外,要注意的是,inplace的取值只有False和True,如给定0或1,会报如下错误:

ValueError: For argument "inplace" expected type bool, received type int.

补充知识:pandas.DataFrame.drop_duplicates后面inplace=True与inplace=False的区别

drop_duplicates(inplace=True)是直接对原dataFrame进行操作。

如:

t.drop_duplicates(inplace=True) 则,对t中重复将被去除。

drop_duplicates(inplace=False)将不改变原来的dataFrame,而将结果生成在一个新的dataFrame中。

如:

s = t.drop_duplicates(inplace=False) 则,t的内容不发生改变,s的内容是去除重复后的内容。

以上就是如何进行python pandas中 inplace 参数的理解,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注行业资讯频道。

0