千家信息网

怎么利用Hadoop实现求共同好友

发表于:2024-11-19 作者:千家信息网编辑
千家信息网最后更新 2024年11月19日,这篇文章主要介绍怎么利用Hadoop实现求共同好友,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!前言在很多社交APP中,比如大家熟悉的QQ好友列表中,打开会话框,经常可以看到下
千家信息网最后更新 2024年11月19日怎么利用Hadoop实现求共同好友

这篇文章主要介绍怎么利用Hadoop实现求共同好友,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

前言

在很多社交APP中,比如大家熟悉的QQ好友列表中,打开会话框,经常可以看到下面有一栏共同好友的推荐列表,用户通过这种方式,可以添加潜在的关联好友

这种功能该如何实现呢?对redis比较了解的同学应该能很快想到,可以使用redis来实现这个功能。没错,redis确实是个不错的可以实现这个功能的方案。

但redis的实现有一定的局限性,因为redis存储和数据和计算时需要耗费较多的内存资源,设想一下,像腾讯QQ这样的规模,如果用这种方式做的话,估计Redis服务器的投入成本将是一笔不小的开销。

利用hadoop中的MapReduce同样可以实现这个功能,该如何实现呢?

业务分析

下面是原始的数据文件,第一栏可理解为本人,第二行为该用户的好友列表,以逗号分割,比如A用户的好友包括:B,C,D,F,E,O这几个,后面的行依次类推

A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J

现在的需求是:通过原始的数据文件,输出该文件中所有用户中哪些人两两之间存在共同好友并输出,格式如下:

A-B C,E
A-C F,D
A-D E,F
......

实现思路分析

步骤一:将原始数据拆分为如下格式

通过这一步,得到一组K/V,可以清晰的反映出一个用户的所有好友

B:A #B是A的好友
C:A #C是A的好友
D:A #D是A的好友
F:A
E:A
O:A

A:B
C:B
E:B
K:B

F:C
A:C
D:C
I:C

B:E
C:E
D:E
M:E
L:E

步骤二、对第一步的数据进一步处理成如下格式

从第一步格式完毕后的数据,可以很明显看出并总结出一个规律,那就是左边那些用户的好友列表,以C用户为例,可以看出C这个用户有A,B,E三个好友,反过来讲,ABE这三个用户,他们有一个共同的好友A

其他的类推进行理解

C A-B-E #C是A和B和E的共同好友
D A-C #D是A和B的共同好友
A B-C #A是B和C的共同好友
B A-E #A是E和B的共同好友
......

步骤三、将步骤二中的数据调换位置

从步骤2中我们得知,C的好友有ABE,反过来说,ABE他们的共同好友有C,针对这种超过3个的,可以考虑下一步进行两两组合即可

A-B-E C #A、B、E有共同好友C
A-C D #A与C有共同好友D
B-C A #B与C有共同好友A
A-E B #A与E有共同好友B

步骤四、将步骤三得到的数据继续拆分

步骤三中,像 : A-B-E C 这种数据,显然需要进一步拆分,因为最终的结果是求取两两好友之间的共同好友,所以可以拆为: A-B C,A-E C,B-E C,为下一步数据组合做最后的准备

A-B C
A-E C
B-E C
A-C D
B-C A
A-E B
......

步骤五、将步骤四得到的数据合并

在使用MapReduce编程中我们知道,Map阶段出去的数据,进入reduce方法中的数据都是key相同的,以第四步中的: A-E 这个key为例,就有2个,这样通过 reduce方法最终输出的结果就是: A-E C,B ,即A-E 这两个用户的共同好友为 C和B

A-B C #A,B共同好友有C
A-E C,B #A,E有共同好友 C,B
B-E C #B,E有共同好友 C
A-C D #A,C有共同好友 D
B-C A #B,C有共同好友 A
......

通过以上的数据分析,最终可以达到预期的效果,同时也可以看出,上面的步骤划分到MapRedcue中,显然一个MapReduce肯定是无法完成的,至少需要2个

下面是结合上面的步骤分析,得出需要两个MapReduce的数据流程图,参考这个图来协助我们分析编写代码逻辑做参考

编码实现

1、第一个map类

public class FirstMapper extends Mapper {    @Override    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {        String val = value.toString();        String[] split = val.split(":");        //A:B,C,D,F,E,O  拆分后,左边是原用户,右边是好友        String user = split[0];        String friends = split[1];        String[] friendLists = friends.split(",");        //Map1 输出的结果为 :        /**         * B A         * C A         * D A         * F A         * E A         */        for(String str :friendLists ){            context.write(new Text(str),new Text(user));        }    }}

2、第一个Reduce类

public class FirstReducer extends Reducer {    @Override    protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {        StringBuffer stringBuffer = new StringBuffer();        for (Text text : values){            stringBuffer.append(text).append("-");        }        //最终写出去的数据格式为: A-E B ......        context.write(new Text(stringBuffer.toString()),key);    }}

3、第一个Job类

public class FirstJob {    public static void main(String[] args) throws Exception {        //1、获取job        Configuration configuration = new Configuration();        Job job = Job.getInstance(configuration);        //2、设置jar路径        job.setJarByClass(FirstJob.class);        //3、关联mapper 和 Reducer        job.setMapperClass(FirstMapper.class);        job.setReducerClass(FirstReducer.class);        //4、设置 map输出的 key/val 的类型        job.setMapOutputKeyClass(Text.class);        job.setMapOutputValueClass(Text.class);        //5、设置最终输出的key / val 类型        job.setOutputKeyClass(Text.class);        job.setOutputValueClass(Text.class);        //6、设置最终的输出路径        String inputPath = "F:\\网盘\\csv\\friends.txt";        String outPath = "F:\\网盘\\csv\\friends1";        FileInputFormat.setInputPaths(job,new Path(inputPath));        FileOutputFormat.setOutputPath(job,new Path(outPath));        // 7 提交job        boolean result = job.waitForCompletion(true);        System.exit(result ? 0 : 1);    }}

运行上面的Job代码,然后打开运行完毕后的第一个阶段的文件,从内容格式上看,符合第一阶段的输出结果要求的, 即下面的这种数据格式

4、第二个map类

public class SecondMapper extends Mapper {    @Override    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {        // I-K-C-B-G-F-H-O-D-    A  阶段1的文件输出格式        /**         * 最终输出格式:         * I-K A         * I-C A         * I-B A         * ......         */        //需要将左边的数据进行两两拆分,与V进行组合输出        String val = value.toString();        String[] split = val.split("\t");        String v2 = split[1];        String[] allUsers = split[0].split("-");        Arrays.sort(allUsers);        for(int i=0;i

5、第二个Reducer类

public class SecondReducer extends Reducer {    @Override    protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {        //上一步输出的结果:        /**         * A-B C         * A-B D         * A-E C         * A-E D         * ......         */        //只需要将相同的key的Val进行组合即可,即 : A-B C-D,A-E C-D        StringBuffer stringBuffer = new StringBuffer();        for (Text text :values ){            stringBuffer.append(text.toString()).append("-");        }        context.write(key,new Text(stringBuffer.toString()));    }}

6、第二个Job类

public class SecondJob {    public static void main(String[] args) throws Exception {        //1、获取job        Configuration configuration = new Configuration();        Job job = Job.getInstance(configuration);        //2、设置jar路径        job.setJarByClass(SecondJob.class);        //3、关联mapper 和 Reducer        job.setMapperClass(SecondMapper.class);        job.setReducerClass(SecondReducer.class);        //4、设置 map输出的 key/val 的类型        job.setMapOutputKeyClass(Text.class);        job.setMapOutputValueClass(Text.class);        //5、设置最终输出的key / val 类型        job.setOutputKeyClass(Text.class);        job.setOutputValueClass(Text.class);        //6、设置最终的输出路径        String inputPath = "F:\\网盘\\csv\\friends1\\part-r-00000";        String outPath = "F:\\网盘\\csv\\friends2";        FileInputFormat.setInputPaths(job,new Path(inputPath));        FileOutputFormat.setOutputPath(job,new Path(outPath));        // 7 提交job        boolean result = job.waitForCompletion(true);        System.exit(result ? 0 : 1);    }}

运行上面的Job代码,查看最终的输出结果,可以看到,也是符合我们预期的业务的

以上是"怎么利用Hadoop实现求共同好友"这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注行业资讯频道!

0