企业为何需要一套数据治理平台
当前,企业变革已经成为企业适应剧烈变化的市场环境、实现长期发展的必经之路。然而,过去为组织带来工作效率提升的烟囱式的孤岛式的业务系统已经成为组织变革重组的阻力,这也是从数据层面打通各个组织单元、实现业务单元快速重组的最根本的需求来源。
数据时代,任何一家企业的数据都非常重要,企业的方方面面都需要相应的数据支持,通过对相关数据的收集、分析、处理、预判,企业可以对业务状况、管理工作等方面有精准的了解和掌握,从而做出合理的决策。如果没有数据管理的能力,那么这家企业也就在慢慢走向死亡。
数据治理真的很重要?
智能是基于数据的,而数据又是基于大量人工与工程努力的,所以人工智能还有相当一部分「人工」。数据收集需要人工确定数据源,或者手动写爬虫;数据处理则需要观察数据,并手动写整个清洗过程;数据标注则要根据具体业务,看看怎样给数据打标签才好。
这些过程都会耗费大量精力,有时候如果处理路径不明确,甚至会导致重复或冗余的人力工作。因此事先确定一个具体的处理流程,明确数据该怎样治理、算力该怎样分配、模型又该如何部署,那么整个开发过程能减少很多人力成本与工程负担。
数据治理有以下三个好处:
1、数据治理节省资金。简单来说,企业进行数据治理后可以减少数据库中的错误,为企业提供可靠的数据资源,从而可以为企业节省宝贵的时间,提高企业的工作效率,企业不需要再花时间去纠正数据。
2、错误的数据会给企业带来风险,而数据治理可以减少这些风险。如果企业数据库中存在错误的数据,那么企业就无法通过这些数据做出正确的判断,从而可能出现一些风险。
3、良好的数据治理为企业提供了清晰、标准的数据。有效的数据治理一般清晰、准确,可以提供企业数据的质量。
如果我们想降低数据治理的成本,最优地调配数据、模型及算力,那么就需要一个成熟数据治理平台。
数据治理平台融合元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全9大产品,每个模块功能可互相调用,全程可视化操作,打通数据治理各个环节,同时提供各个产品模块任意组合,快速解决企业不同的数据治理场景。
元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。
数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。
数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。
数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。
主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。
数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。
数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。
生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。
数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。
对于企业来说,数据的有效管理可以帮助提前提供工作的效率,节省人工成本,并且良好的数据治理可以使企业的数据更加清晰、标准、准确,可以让企业通过数据做出准确的规划。