千家信息网

4.spark快速入门

发表于:2024-11-26 作者:千家信息网编辑
千家信息网最后更新 2024年11月26日,  spark框架是用scala写的,运行在Java虚拟机(JVM)上。支持Python、Java、Scala或R多种语言编写客户端应用。下载Spark  访问http://spark.apache.
千家信息网最后更新 2024年11月26日4.spark快速入门

  spark框架是用scala写的,运行在Java虚拟机(JVM)上。支持Python、Java、Scala或R多种语言编写客户端应用。

下载Spark

  访问http://spark.apache.org/downloads.html选择预编译的版本进行下载。

解压Spark

  打开终端,将工作路径转到下载的spark压缩包所在的目录,然后解压压缩包。
可使用如下命令:

cd ~tar -xf spark-2.2.2-bin-hadoop2.7.tgz -C /opt/module/cd spark-2.2.2-bin-hadoop2.7ls

  注:tar命令中x标记指定tar命令执行解压缩操作,f标记指定压缩包的文件名。

spark主要目录结构

  • README.md

  包含用来入门spark的简单使用说明

  • bin

  包含可用来和spark进行各种方式交互的一系列可执行文件

  • core、streaming、python

  包含spark项目主要组件的源代码

  • examples

  包含一些可查看和运行的spark程序,对学习spark的API非常有帮助

运行案例及交互式Shell

运行案例

./bin/run-example SparkPi 10

scala shell

./bin/spark-shell --master local[2] # --master选项指定运行模式。local是指使用一个线程本地运行;local[N]是指使用N个线程本地运行。

python shell

./bin/pyspark --master local[2]

R shell

./bin/sparkR --master local[2]

提交应用脚本

#支持多种语言提交./bin/spark-submit examples/src/main/python/pi.py 10./bin/spark-submit examples/src/main/r/dataframe.R...

使用spark shell进行交互式分析

scala

  使用spark-shell脚本进行交互式分析。

基础
scala> val textFile = spark.read.textFile("README.md")textFile: org.apache.spark.sql.Dataset[String] = [value: string]scala> textFile.count() // Number of items in this Datasetres0: Long = 126 // May be different from yours as README.md will change over time, similar to other outputsscala> textFile.first() // First item in this Datasetres1: String = # Apache Spark#使用filter算子返回原DataSet的子集scala> val linesWithSpark = textFile.filter(line => line.contains("Spark"))linesWithSpark: org.apache.spark.sql.Dataset[String] = [value: string]#拉链方式scala> textFile.filter(line => line.contains("Spark")).count() // How many lines contain "Spark"?res3: Long = 15
进阶
#使用DataSet的转换和动作查找最多单词的行scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)res4: Long = 15
#统计单词个数scala> val wordCounts = textFile.flatMap(line => line.split(" ")).groupByKey(identity).count()wordCounts: org.apache.spark.sql.Dataset[(String, Long)] = [value: string, count(1): bigint]scala> wordCounts.collect()res6: Array[(String, Int)] = Array((means,1), (under,2), (this,3), (Because,1), (Python,2), (agree,1), (cluster.,1), ...)

python

  使用pyspark脚本进行交互式分析

基础
>>> textFile = spark.read.text("README.md")>>> textFile.count()  # Number of rows in this DataFrame126>>> textFile.first()  # First row in this DataFrameRow(value=u'# Apache Spark')#filter过滤>>> linesWithSpark = textFile.filter(textFile.value.contains("Spark"))#拉链方式>>> textFile.filter(textFile.value.contains("Spark")).count()  # How many lines contain "Spark"?15
进阶
#查找最多单词的行>>> from pyspark.sql.functions import *>>> textFile.select(size(split(textFile.value, "\s+")).name("numWords")).agg(max(col("numWords"))).collect()[Row(max(numWords)=15)]#统计单词个数>>> wordCounts = textFile.select(explode(split(textFile.value, "\s+")).alias("word")).groupBy("word").count()>>> wordCounts.collect()[Row(word=u'online', count=1), Row(word=u'graphs', count=1), ...]

独立应用

  spark除了交互式运行之外,spark也可以在Java、Scala或Python的独立程序中被连接使用。
  独立应用与shell的主要区别在于需要自行初始化SparkContext。

scala

分别统计包含单词a和单词b的行数

/* SimpleApp.scala */import org.apache.spark.sql.SparkSessionobject SimpleApp {  def main(args: Array[String]) {    val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system    val spark = SparkSession.builder.appName("Simple Application").getOrCreate()    val logData = spark.read.textFile(logFile).cache()    val numAs = logData.filter(line => line.contains("a")).count()    val numBs = logData.filter(line => line.contains("b")).count()    println(s"Lines with a: $numAs, Lines with b: $numBs")    spark.stop()  }}

运行应用

# Use spark-submit to run your application$ YOUR_SPARK_HOME/bin/spark-submit \  --class "SimpleApp" \  --master local[4] \  target/scala-2.11/simple-project_2.11-1.0.jar...Lines with a: 46, Lines with b: 23

java

分别统计包含单词a和单词b的行数

/* SimpleApp.java */import org.apache.spark.sql.SparkSession;import org.apache.spark.sql.Dataset;public class SimpleApp {  public static void main(String[] args) {    String logFile = "YOUR_SPARK_HOME/README.md"; // Should be some file on your system    SparkSession spark = SparkSession.builder().appName("Simple Application").getOrCreate();    Dataset logData = spark.read().textFile(logFile).cache();    long numAs = logData.filter(s -> s.contains("a")).count();    long numBs = logData.filter(s -> s.contains("b")).count();    System.out.println("Lines with a: " + numAs + ", lines with b: " + numBs);    spark.stop();  }}

运行应用

# Use spark-submit to run your application$ YOUR_SPARK_HOME/bin/spark-submit \  --class "SimpleApp" \  --master local[4] \  target/simple-project-1.0.jar...Lines with a: 46, Lines with b: 23

python

分别统计包含单词a和单词b的行数

setup.py脚本添加内容install_requires=[    'pyspark=={site.SPARK_VERSION}']
"""SimpleApp.py"""from pyspark.sql import SparkSessionlogFile = "YOUR_SPARK_HOME/README.md"  # Should be some file on your systemspark = SparkSession.builder().appName(appName).master(master).getOrCreate()logData = spark.read.text(logFile).cache()numAs = logData.filter(logData.value.contains('a')).count()numBs = logData.filter(logData.value.contains('b')).count()print("Lines with a: %i, lines with b: %i" % (numAs, numBs))spark.stop()

运行应用

# Use spark-submit to run your application$ YOUR_SPARK_HOME/bin/spark-submit \  --master local[4] \  SimpleApp.py...Lines with a: 46, Lines with b: 23

忠于技术,热爱分享。欢迎关注公众号:java大数据编程,了解更多技术内容。

0