Java数据机构中并查集的示例分析
这篇文章主要介绍Java数据机构中并查集的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
概念
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等。
并查集的主要作用是求连通分支数(如果一个图中所有点都存在可达关系(直接或间接相连),则此图的连通分支数为1;如果此图有两大子图各自全部可达,则此图的连通分支数为2……)
在现实生活中,也是存在着并查集的一些概念,例如最近《天龙八部》里的人物关系,可能你并不认识丐帮的一些小人物,但是你一定认识丐帮帮主乔峰。当你看见一个叫花子,你就会想到他的老大就是帮主乔峰,像这样的场景,就有了一定的归属感, 会自动的认为叫花子就是跟丐帮合并在一起的……
说简单一点,并查集就是将一些数据进行分类,这样数据为一组,那些数据为另一组。如何判断其中两个数据,在不在一个组?我们就会去找每个组的代表,看这两个数据的代表是不是同一个?如果是,那就是在一个组;如果不是,那就不在一个组。所以并查集的大致框架就是下面这样:
//并查集大致框架---代码中的数据(Node),可以是其他,比如二叉树节点、图的边、节点等等 抽象的数据public class UnionSet { private HashMapfatherMap; //key表示当前这个数据,value表示这个数据的代表(父亲)是谁 private HashMap sizeMap; //表示当前这个组(集合)的大小 public UnionSet() { //构造方法 fatherMap = new HashMap<>(); sizeMap = new HashMap<>(); } public void makeSet(List list) { //生成初始化状态的并查集,刚开始每个数据都是独立的 } public boolean isSameSet(Node node1, Node node2) { //判断当前这两个数据,是不是一个组的? } private Node findFather(Node node) { //查找这个数据,它那个组的代表(父亲)是谁? } public void union(Node node1, Node node2) { //将这两个数据,放到一个组 }}
上面就是大致的框架,就是几个方法:初始化并查集、判断是不是一个组、查找代表、合并到一个组
。四个方法,就是并查集。简不简单?
并查集在判断两个数据,是否在一个组时,时间复杂度能做到O(1),所以这种数据结构还是非常有用的。
实现
初始化并查集
我们首先从第一个方法:初始化并查集开始。
传入进去的参数不一定是List,也可以是Collection等等,表示一组数据即可! 首先我们的成员变量只有两个,分别是存储节点的代表 和 当前这个组的大小。初始化时,我们分别认为 每个节点是自己一个人一组的,也就是说,自己一个组,代表就是自己本身;大小的话,就是自己本身咯,也就是1。
//初始化并查集public void makeSet(Listlist) { if (list == null) { return; } fatherMap.clear(); sizeMap.clear(); //先将表清空 //遍历list,把每一个节点,都放入哈希表中 for (Node node : list) { fatherMap.put(node, node); //第一个参数是节点本身,第二个参数就是这个组的代表 sizeMap.put(node, 1); //第一个参数是这个组的代表,第二个参数是大小 }}
判断是不是同一个组
isSameSet
比较简单,就是判断两个数据所在的组的代表,是不是用一个数据即可!如果代表是同一个人,那就是在一个组,反之就不是!
//判断是不是同一个组public boolean isSameSet(Node node1, Node node2) { if (node1 == null || node2 == null) { return false; } return findFather(node1) == findFather(node2); //查找各自的代表节点,看是不是同一个。}
查找当前节点的代表节点
findFather
,我自己觉得算是并查集的核心,也这是这个方法,是并查集的查找的时间复杂度能在O(1)的主要因素。
思路就跟二叉树向上查找根结点的思路一样,也就是说,在fatherMap中一直查找,直到一个节点的代表节点(父节点)是它自己本身时,此时就查找完了;然后最关键的一步,就是路径压缩,在我们向上查找的过程中,我们需要记录沿途的所有节点,在查找结束后,我们将沿途的这些节点,在fatherMap中的进行修改,直接将这些节点的代表节点,写成这个组的代表节点,可能听糊涂了,看下图:
这样的设计,就能使查找的时间复杂度控制在O(1)。
//查找代表节点,并做路径压缩private Node findFather(Node node) { if (node == null) { return null; } //查找代表节点 Stackpath = new Stack<>(); //存储沿途的节点 while (node != fatherMap.get(node)) { //代表节点不是自己本身,就继续查找 path.push(node); node = fatherMap.get(node); } //路径压缩 while (!path.isEmpty()) { Node tmp = path.pop(); fatherMap.put(tmp, node); //此时的node,就是这个组的代表节点 } return node;}
合并操作
终于来到了最后的操作:合并。合并也比较简单,记住一个要点:小组挂在大组的下面。也就是说,这一个节点所在的组要小一点,我们直接将他"挂"在另一个组的下面。说简单一点:这一个组的代表节点的vaule域,直接指向另一个组的代表节点。
//合并操作public void union(Node node1, Node node2) { if (node1 == null || node2 == null) { return; } int node1Size = sizeMap.get(node1); int node2Size = sizeMap.get(node2); //分别得到两个节点所在组的大小 Node node1Father = fatherMap.get(node1); Node node2Father = fatherMap.get(node2); //分别拿到两个节点的代表节点 if (node1Father != node2Father) { //两个节点,不在同一个组,就合并 if (node1Size < node2Size) { //node1 挂在 node2 fatherMap.put(node1Father, node2Father); sizeMap.put(node2Father, node1Size + node2Size); //新的组,大小是原来两个组的和 sizeMap.remove(node1Father); //小组的数据,就不需要了,删除 } else { //node2 挂在 node1 //跟上面操作类似 fatherMap.put(node2Father, node1Father); sizeMap.put(node1Father, node1Size + node2Size); sizeMap.remove(node1Father); } }}
以上是"Java数据机构中并查集的示例分析"这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注行业资讯频道!