kubernetes系列教程(六)kubernetes资源管理和服务质量
写在前面
上一篇文章中kubernetes系列教程(五)深入掌握核心概念pod初步介绍了yaml学习kubernetes中重要的一个概念pod,接下来介绍kubernetes系列教程pod的resource资源管理和pod的Quality of service服务质量。
1. Pod资源管理
1.1 resource定义
容器运行过程中需要分配所需的资源,如何与cggroup联动配合呢?答案是通过定义resource来实现资源的分配,资源的分配单位主要是cpu和memory,资源的定义分两种:requests和limits,requests表示请求资源,主要用于初始kubernetes调度pod时的依据,表示必须满足的分配资源;limits表示资源的限制,即pod不能超过limits定义的限制大小,超过则通过cggroup限制,pod中定义资源可以通过下面四个字段定义:
- spec.container[].resources.requests.cpu 请求cpu资源的大小,如0.1个cpu和100m表示分配1/10个cpu;
- spec.container[].resources.requests.memory 请求内存大小,单位可用M,Mi,G,Gi表示;
- spec.container[].resources.limits.cpu 限制cpu的大小,不能超过阀值,cggroup中限制的值;
- spec.container[].resources.limits.memory 限制内存的大小,不能超过阀值,超过会发生OOM;
1、开始学习如何定义pod的resource资源,如下以定义nginx-demo为例,容器请求cpu资源为250m,限制为500m,请求内存资源为128Mi,限制内存资源为256Mi,当然也可以定义多个容器的资源,多个容器相加就是pod的资源总资源,如下:
[root@node-1 demo]#cat nginx-resource.yaml apiVersion: v1kind: Podmetadata: name: nginx-demo labels: name: nginx-demospec: containers: - name: nginx-demo image: nginx:1.7.9 imagePullPolicy: IfNotPresent ports: - name: nginx-port-80 protocol: TCP containerPort: 80 resources: requests: cpu: 0.25 memory: 128Mi limits: cpu: 500m memory: 256Mi
2、应用pod的配置定义(如之前的pod还存在,先将其删除kubectl delete pod
[root@node-1 demo]# kubectl apply -f nginx-resource.yaml pod/nginx-demo created
3、查看pod资源的分配详情
[root@node-1 demo]# kubectl get podsNAME READY STATUS RESTARTS AGEdemo-7b86696648-8bq7h 1/1 Running 0 12ddemo-7b86696648-8qp46 1/1 Running 0 12ddemo-7b86696648-d6hfw 1/1 Running 0 12dnginx-demo 1/1 Running 0 94s[root@node-1 demo]# kubectl describe pods nginx-demo Name: nginx-demoNamespace: defaultPriority: 0Node: node-3/10.254.100.103Start Time: Sat, 28 Sep 2019 12:10:49 +0800Labels: name=nginx-demoAnnotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"v1","kind":"Pod","metadata":{"annotations":{},"labels":{"name":"nginx-demo"},"name":"nginx-demo","namespace":"default"},"sp...Status: RunningIP: 10.244.2.13Containers: nginx-demo: Container ID: docker://55d28fdc992331c5c58a51154cd072cd6ae37e03e05ae829a97129f85eb5ed79 Image: nginx:1.7.9 Image ID: docker-pullable://nginx@sha256:e3456c851a152494c3e4ff5fcc26f240206abac0c9d794affb40e0714846c451 Port: 80/TCP Host Port: 0/TCP State: Running Started: Sat, 28 Sep 2019 12:10:51 +0800 Ready: True Restart Count: 0 Limits: #限制资源 cpu: 500m memory: 256Mi Requests: #请求资源 cpu: 250m memory: 128Mi Environment: ...省略...
4、Pod的资源如何分配呢?毫无疑问是从node上分配的,当我们创建一个pod的时候如果设置了requests,kubernetes的调度器kube-scheduler会执行两个调度过程:filter过滤和weight称重,kube-scheduler会根据请求的资源过滤,把符合条件的node筛选出来,然后再进行排序,把最满足运行pod的node筛选出来,然后再特定的node上运行pod。调度算法和细节可以参考下kubernetes调度算法介绍。如下是node-3节点资源的分配详情:
[root@node-1 ~]# kubectl describe node node-3...省略...Capacity: #节点上资源的总资源情况,1个cpu,2g内存,110个pod cpu: 1 ephemeral-storage: 51473888Ki hugepages-2Mi: 0 memory: 1882352Ki pods: 110Allocatable: #节点容许分配的资源情况,部分预留的资源会排出在Allocatable范畴 cpu: 1 ephemeral-storage: 47438335103 hugepages-2Mi: 0 memory: 1779952Ki pods: 110System Info: Machine ID: 0ea734564f9a4e2881b866b82d679dfc System UUID: FFCD2939-1BF2-4200-B4FD-8822EBFFF904 Boot ID: 293f49fd-8a7c-49e2-8945-7a4addbd88ca Kernel Version: 3.10.0-957.21.3.el7.x86_64 OS Image: CentOS Linux 7 (Core) Operating System: linux Architecture: amd64 Container Runtime Version: docker://18.6.3 Kubelet Version: v1.15.3 Kube-Proxy Version: v1.15.3PodCIDR: 10.244.2.0/24Non-terminated Pods: (3 in total) #节点上运行pod的资源的情况,除了nginx-demo之外还有多个pod Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits AGE --------- ---- ------------ ---------- --------------- ------------- --- default nginx-demo 250m (25%) 500m (50%) 128Mi (7%) 256Mi (14%) 63m kube-system kube-flannel-ds-amd64-jp594 100m (10%) 100m (10%) 50Mi (2%) 50Mi (2%) 14d kube-system kube-proxy-mh3gq 0 (0%) 0 (0%) 0 (0%) 0 (0%) 12dAllocated resources: #已经分配的cpu和memory的资源情况 (Total limits may be over 100 percent, i.e., overcommitted.) Resource Requests Limits -------- -------- ------ cpu 350m (35%) 600m (60%) memory 178Mi (10%) 306Mi (17%) ephemeral-storage 0 (0%) 0 (0%)Events:
1.2 资源分配原理
Pod的定义的资源requests和limits作用于kubernetes的调度器kube-sheduler上,实际上cpu和内存定义的资源会应用在container上,通过容器上的cggroup实现资源的隔离作用,接下来我们介绍下资源分配的原理。
- spec.containers[].resources.requests.cpu 作用在CpuShares,表示分配cpu 的权重,争抢时的分配比例
- spec.containers[].resources.requests.memory 主要用于kube-scheduler调度器,对容器没有设置意义
- spec.containers[].resources.limits.cpu 作用CpuQuota和CpuPeriod,单位为微秒,计算方法为:CpuQuota/CpuPeriod,表示最大cpu最大可使用的百分比,如500m表示允许使用1个cpu中的50%资源
- spec.containers[].resources.limits.memory 作用在Memory,表示容器最大可用内存大小,超过则会OOM
以上面定义的nginx-demo为例,研究下pod中定义的requests和limits应用在docker生效的参数:
1、查看pod所在的node节点,nginx-demo调度到node-3节点上
[root@node-1 ~]# kubectl get pods -o wide nginx-demoNAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATESnginx-demo 1/1 Running 0 96m 10.244.2.13 node-3
2、获取容器的id号,可以通过kubectl describe pods nginx-demo的containerID获取到容器的id,或者登陆到node-3节点通过名称过滤获取到容器的id号,默认会有两个pod:一个通过pause镜像创建,另外一个通过应用镜像创建
[root@node-3 ~]# docker container list |grep nginx55d28fdc9923 84581e99d807 "nginx -g 'daemon of…" 2 hours ago Up 2 hours k8s_nginx-demonginx-demo_default_66958ef7-507a-41cd-a688-7a4976c6a71e_02fe0498ea9b5 k8s.gcr.io/pause:3.1 "/pause" 2 hours ago Up 2 hours k8s_POD_nginx-demo_default_66958ef7-507a-41cd-a688-7a4976c6a71e_0
3、查看docker容器详情信息
[root@node-3 ~]# docker container inspect 55d28fdc9923[...部分输出省略... { "Image": "sha256:84581e99d807a703c9c03bd1a31cd9621815155ac72a7365fd02311264512656", "ResolvConfPath": "/var/lib/docker/containers/2fe0498ea9b5dfe1eb63eba09b1598a8dfd60ef046562525da4dcf7903a25250/resolv.conf", "HostConfig": { "Binds": [ "/var/lib/kubelet/pods/66958ef7-507a-41cd-a688-7a4976c6a71e/volumes/kubernetes.io~secret/default-token-5qwmc:/var/run/secrets/kubernetes.io/serviceaccount:ro", "/var/lib/kubelet/pods/66958ef7-507a-41cd-a688-7a4976c6a71e/etc-hosts:/etc/hosts", "/var/lib/kubelet/pods/66958ef7-507a-41cd-a688-7a4976c6a71e/containers/nginx-demo/1cc072ca:/dev/termination-log" ], "ContainerIDFile": "", "LogConfig": { "Type": "json-file", "Config": { "max-size": "100m" } }, "UTSMode": "", "UsernsMode": "", "ShmSize": 67108864, "Runtime": "runc", "ConsoleSize": [ 0, 0 ], "Isolation": "", "CpuShares": 256, CPU分配的权重,作用在requests.cpu上 "Memory": 268435456, 内存分配的大小,作用在limits.memory上 "NanoCpus": 0, "CgroupParent": "kubepods-burstable-pod66958ef7_507a_41cd_a688_7a4976c6a71e.slice", "BlkioWeight": 0, "BlkioWeightDevice": null, "BlkioDeviceReadBps": null, "BlkioDeviceWriteBps": null, "BlkioDeviceReadIOps": null, "BlkioDeviceWriteIOps": null, "CpuPeriod": 100000, CPU分配的使用比例,和CpuQuota一起作用在limits.cpu上 "CpuQuota": 50000, "CpuRealtimePeriod": 0, "CpuRealtimeRuntime": 0, "CpusetCpus": "", "CpusetMems": "", "Devices": [], "DeviceCgroupRules": null, "DiskQuota": 0, "KernelMemory": 0, "MemoryReservation": 0, "MemorySwap": 268435456, "MemorySwappiness": null, "OomKillDisable": false, "PidsLimit": 0, "Ulimits": null, "CpuCount": 0, "CpuPercent": 0, "IOMaximumIOps": 0, "IOMaximumBandwidth": 0, }, }]
1.3. cpu资源测试
pod中cpu的限制主要通过requests.cpu和limits.cpu来定义,limits是不能超过的cpu大小,我们通过stress镜像来验证,stress是一个cpu和内存的压侧工具,通过指定args参数的定义压侧cpu的大小。监控pod的cpu和内存可通过kubectl top的方式来查看,依赖于监控组件如metric-server或promethus,当前没有安装,我们通过docker stats的方式来查看。
1、通过stress镜像定义一个pod,分配0.25个cores和最大限制0.5个core使用比例
[root@node-1 demo]# cat cpu-demo.yaml apiVersion: v1kind: Podmetadata: name: cpu-demo namespace: default annotations: kubernetes.io/description: "demo for cpu requests and"spec: containers: - name: stress-cpu image: vish/stress resources: requests: cpu: 250m limits: cpu: 500m args: - -cpus - "1"
2、应用yaml文件生成pod
[root@node-1 demo]# kubectl apply -f cpu-demo.yaml pod/cpu-demo created
3、查看pod资源分配详情
[root@node-1 demo]# kubectl describe pods cpu-demo Name: cpu-demoNamespace: defaultPriority: 0Node: node-2/10.254.100.102Start Time: Sat, 28 Sep 2019 14:33:12 +0800Labels: Annotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"v1","kind":"Pod","metadata":{"annotations":{"kubernetes.io/description":"demo for cpu requests and"},"name":"cpu-demo","nam... kubernetes.io/description: demo for cpu requests andStatus: RunningIP: 10.244.1.14Containers: stress-cpu: Container ID: docker://14f93767ad37b92beb91e3792678f60c9987bbad3290ae8c29c35a2a80101836 Image: progrium/stress Image ID: docker-pullable://progrium/stress@sha256:e34d56d60f5caae79333cee395aae93b74791d50e3841986420d23c2ee4697bf Port: Host Port: Args: -cpus 1 State: Waiting Reason: CrashLoopBackOff Last State: Terminated Reason: Error Exit Code: 1 Started: Sat, 28 Sep 2019 14:34:28 +0800 Finished: Sat, 28 Sep 2019 14:34:28 +0800 Ready: False Restart Count: 3 Limits: #cpu限制使用的比例 cpu: 500m Requests: #cpu请求的大小 cpu: 250m
4、登陆到特定的node节点,通过docker container stats查看容器的资源使用详情
在pod所属的node上通过top查看,cpu的使用率限制百分比为50%。
通过上面的验证可以得出结论,我们在stress容器中定义使用1个core,通过limits.cpu限定可使用的cpu大小是500m,测试验证pod的资源已在容器内部或宿主机上都严格限制在50%(node机器上只有一个cpu,如果有2个cpu则会分摊为25%)。
1.4 memory资源测试
1、通过stress镜像测试验证requests.memory和limits.memory的生效范围,limits.memory定义容器可使用的内存资源大小,当超过内存设定的大小后容器会发生OOM,如下定义一个测试的容器,最大内存不能超过512M,使用stress镜像--vm-bytes定义压侧内存大小为256Mi
[root@node-1 demo]# cat memory-demo.yaml apiVersion: v1kind: Podmetadata: name: memory-stress-demo annotations: kubernetes.io/description: "stress demo for memory limits"spec: containers: - name: memory-stress-limits image: polinux/stress resources: requests: memory: 128Mi limits: memory: 512Mi command: ["stress"] args: ["--vm", "1", "--vm-bytes", "256M", "--vm-hang", "1"]
2、应用yaml文件生成pod
[root@node-1 demo]# kubectl apply -f memory-demo.yaml pod/memory-stress-demo created[root@node-1 demo]# kubectl get pods memory-stress-demo -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATESmemory-stress-demo 1/1 Running 0 41s 10.244.1.19 node-2
3、查看资源的分配情况
[root@node-1 demo]# kubectl describe pods memory-stress-demoName: memory-stress-demoNamespace: defaultPriority: 0Node: node-2/10.254.100.102Start Time: Sat, 28 Sep 2019 15:13:06 +0800Labels: Annotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"v1","kind":"Pod","metadata":{"annotations":{"kubernetes.io/description":"stress demo for memory limits"},"name":"memory-str... kubernetes.io/description: stress demo for memory limitsStatus: RunningIP: 10.244.1.16Containers: memory-stress-limits: Container ID: docker://c7408329cffab2f10dd860e50df87bd8671e65a0f8abb4dae96d059c0cb6bb2d Image: polinux/stress Image ID: docker-pullable://polinux/stress@sha256:6d1825288ddb6b3cec8d3ac8a488c8ec2449334512ecb938483fc2b25cbbdb9a Port: Host Port: Command: stress Args: --vm 1 --vm-bytes 256Mi --vm-hang 1 State: Waiting Reason: CrashLoopBackOff Last State: Terminated Reason: Error Exit Code: 1 Started: Sat, 28 Sep 2019 15:14:08 +0800 Finished: Sat, 28 Sep 2019 15:14:08 +0800 Ready: False Restart Count: 3 Limits: #内存限制大小 memory: 512Mi Requests: #内存请求大小 memory: 128Mi Environment: Mounts: /var/run/secrets/kubernetes.io/serviceaccount from default-token-5qwmc (ro)
4、查看容器内存资源的使用情况,分配256M内存,最大可使用为512Mi,利用率为50%,此时没有超过limits限制的大小,容器运行正常
5、当容器内部超过内存的大小会怎么样呢,我们将--vm-byte设置为513M,容器会尝试运行,超过内存后会OOM,kube-controller-manager会不停的尝试重启容器,RESTARTS的次数会不停的增加。
[root@node-1 demo]# cat memory-demo.yaml apiVersion: v1kind: Podmetadata: name: memory-stress-demo annotations: kubernetes.io/description: "stress demo for memory limits"spec: containers: - name: memory-stress-limits image: polinux/stress resources: requests: memory: 128Mi limits: memory: 512Mi command: ["stress"] args: ["--vm", "1", "--vm-bytes", "520M", "--vm-hang", "1"] . #容器中使用内存为520M查看容器的状态为OOMKilled,RESTARTS的次数不断的增加,不停的尝试重启[root@node-1 demo]# kubectl get pods memory-stress-demo NAME READY STATUS RESTARTS AGEmemory-stress-demo 0/1 OOMKilled 3 60s
2. Pod服务质量
服务质量QOS(Quality of Service)主要用于pod调度和驱逐时参考的重要因素,不同的QOS其服务质量不同,对应不同的优先级,主要分为三种类型的Qos:
- BestEffort 尽最大努力分配资源,默认没有指定resource分配的Qos,优先级最低;
- Burstable 可波动的资源,至少需要分配到requests中的资源,常见的QOS;
- Guaranteed 完全可保障资源,requests和limits定义的资源相同,优先级最高。
2.1 BestEffort最大努力
1、Pod中没有定义resource,默认的Qos策略为BestEffort,优先级别最低,当资源比较进展是需要驱逐evice时,优先驱逐BestEffort定义的Pod,如下定义一个BestEffort的Pod
[root@node-1 demo]# cat nginx-qos-besteffort.yaml apiVersion: v1kind: Podmetadata: name: nginx-qos-besteffort labels: name: nginx-qos-besteffortspec: containers: - name: nginx-qos-besteffort image: nginx:1.7.9 imagePullPolicy: IfNotPresent ports: - name: nginx-port-80 protocol: TCP containerPort: 80 resources: {}
2、创建pod并查看Qos策略,qosClass为BestEffort
[root@node-1 demo]# kubectl apply -f nginx-qos-besteffort.yaml pod/nginx-qos-besteffort created查看Qos策略[root@node-1 demo]# kubectl get pods nginx-qos-besteffort -o yamlapiVersion: v1kind: Podmetadata: annotations: kubectl.kubernetes.io/last-applied-configuration: | {"apiVersion":"v1","kind":"Pod","metadata":{"annotations":{},"labels":{"name":"nginx-qos-besteffort"},"name":"nginx-qos-besteffort","namespace":"default"},"spec":{"containers":[{"image":"nginx:1.7.9","imagePullPolicy":"IfNotPresent","name":"nginx-qos-besteffort","ports":[{"containerPort":80,"name":"nginx-port-80","protocol":"TCP"}],"resources":{}}]}} creationTimestamp: "2019-09-28T11:12:03Z" labels: name: nginx-qos-besteffort name: nginx-qos-besteffort namespace: default resourceVersion: "1802411" selfLink: /api/v1/namespaces/default/pods/nginx-qos-besteffort uid: 56e4a2d5-8645-485d-9362-fe76aad76e74spec: containers: - image: nginx:1.7.9 imagePullPolicy: IfNotPresent name: nginx-qos-besteffort ports: - containerPort: 80 name: nginx-port-80 protocol: TCP resources: {} terminationMessagePath: /dev/termination-log...省略...status: hostIP: 10.254.100.102 phase: Running podIP: 10.244.1.21 qosClass: BestEffort #Qos策略 startTime: "2019-09-28T11:12:03Z"
3、删除测试Pod
[root@node-1 demo]# kubectl delete pods nginx-qos-besteffort pod "nginx-qos-besteffort" deleted
2.2 Burstable可波动
1、Pod的服务质量为Burstable,仅次于Guaranteed的服务质量,至少需要一个container定义了requests,且requests定义的资源小于limits资源
[root@node-1 demo]# cat nginx-qos-burstable.yaml apiVersion: v1kind: Podmetadata: name: nginx-qos-burstable labels: name: nginx-qos-burstablespec: containers: - name: nginx-qos-burstable image: nginx:1.7.9 imagePullPolicy: IfNotPresent ports: - name: nginx-port-80 protocol: TCP containerPort: 80 resources: requests: cpu: 100m memory: 128Mi limits: cpu: 200m memory: 256Mi
2、应用yaml文件生成pod并查看Qos类型
[root@node-1 demo]# kubectl apply -f nginx-qos-burstable.yaml pod/nginx-qos-burstable created查看Qos类型[root@node-1 demo]# kubectl describe pods nginx-qos-burstable Name: nginx-qos-burstableNamespace: defaultPriority: 0Node: node-2/10.254.100.102Start Time: Sat, 28 Sep 2019 19:27:37 +0800Labels: name=nginx-qos-burstableAnnotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"v1","kind":"Pod","metadata":{"annotations":{},"labels":{"name":"nginx-qos-burstable"},"name":"nginx-qos-burstable","namespa...Status: RunningIP: 10.244.1.22Containers: nginx-qos-burstable: Container ID: docker://d1324b3953ba6e572bfc63244d4040fee047ed70138b5a4bad033899e818562f Image: nginx:1.7.9 Image ID: docker-pullable://nginx@sha256:e3456c851a152494c3e4ff5fcc26f240206abac0c9d794affb40e0714846c451 Port: 80/TCP Host Port: 0/TCP State: Running Started: Sat, 28 Sep 2019 19:27:39 +0800 Ready: True Restart Count: 0 Limits: cpu: 200m memory: 256Mi Requests: cpu: 100m memory: 128Mi Environment: Mounts: /var/run/secrets/kubernetes.io/serviceaccount from default-token-5qwmc (ro)Conditions: Type Status Initialized True Ready True ContainersReady True PodScheduled True Volumes: default-token-5qwmc: Type: Secret (a volume populated by a Secret) SecretName: default-token-5qwmc Optional: falseQoS Class: Burstable #服务质量是可波动的BurstableNode-Selectors: Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s node.kubernetes.io/unreachable:NoExecute for 300sEvents: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 95s default-scheduler Successfully assigned default/nginx-qos-burstable to node-2 Normal Pulled 94s kubelet, node-2 Container image "nginx:1.7.9" already present on machine Normal Created 94s kubelet, node-2 Created container nginx-qos-burstable Normal Started 93s kubelet, node-2 Started container nginx-qos-burstable
2.3 Guaranteed完全保障
1、resource中定义的cpu和memory必须包含有requests和limits,切requests和limits的值必须相同,其优先级别最高,当出现调度和驱逐时优先保障该类型的Qos,如下定义一个nginx-qos-guaranteed的容器,requests.cpu和limits.cpu相同,同理requests.memory和limits.memory.
[root@node-1 demo]# cat nginx-qos-guaranteed.yaml apiVersion: v1kind: Podmetadata: name: nginx-qos-guaranteed labels: name: nginx-qos-guaranteedspec: containers: - name: nginx-qos-guaranteed image: nginx:1.7.9 imagePullPolicy: IfNotPresent ports: - name: nginx-port-80 protocol: TCP containerPort: 80 resources: requests: cpu: 200m memory: 256Mi limits: cpu: 200m memory: 256Mi
2、应用yaml文件生成pod并查看pod的Qos类型为可完全保障Guaranteed
[root@node-1 demo]# kubectl apply -f nginx-qos-guaranteed.yaml pod/nginx-qos-guaranteed created[root@node-1 demo]# kubectl describe pods nginx-qos-guaranteed Name: nginx-qos-guaranteedNamespace: defaultPriority: 0Node: node-2/10.254.100.102Start Time: Sat, 28 Sep 2019 19:37:15 +0800Labels: name=nginx-qos-guaranteedAnnotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"v1","kind":"Pod","metadata":{"annotations":{},"labels":{"name":"nginx-qos-guaranteed"},"name":"nginx-qos-guaranteed","names...Status: RunningIP: 10.244.1.23Containers: nginx-qos-guaranteed: Container ID: docker://cf533e0e331f49db4e9effb0fbb9249834721f8dba369d281c8047542b9f032c Image: nginx:1.7.9 Image ID: docker-pullable://nginx@sha256:e3456c851a152494c3e4ff5fcc26f240206abac0c9d794affb40e0714846c451 Port: 80/TCP Host Port: 0/TCP State: Running Started: Sat, 28 Sep 2019 19:37:16 +0800 Ready: True Restart Count: 0 Limits: cpu: 200m memory: 256Mi Requests: cpu: 200m memory: 256Mi Environment: Mounts: /var/run/secrets/kubernetes.io/serviceaccount from default-token-5qwmc (ro)Conditions: Type Status Initialized True Ready True ContainersReady True PodScheduled True Volumes: default-token-5qwmc: Type: Secret (a volume populated by a Secret) SecretName: default-token-5qwmc Optional: falseQoS Class: Guaranteed #服务质量为可完全保障GuaranteedNode-Selectors: Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s node.kubernetes.io/unreachable:NoExecute for 300sEvents: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 25s default-scheduler Successfully assigned default/nginx-qos-guaranteed to node-2 Normal Pulled 24s kubelet, node-2 Container image "nginx:1.7.9" already present on machine Normal Created 24s kubelet, node-2 Created container nginx-qos-guaranteed Normal Started 24s kubelet, node-2 Started container nginx-qos-guaranteed
写在最后
本章是kubernetes系列教程第六篇文章,通过介绍resource资源的分配和服务质量Qos,关于resource有节点使用建议:
- requests和limits资源定义推荐不超过1:2,避免分配过多资源而出现资源争抢,发生OOM;
- pod中默认没有定义resource,推荐给namespace定义一个limitrange,确保pod能分到资源;
- 防止node上资源过度而出现机器hang住或者OOM,建议node上设置保留和驱逐资源,如保留资源--system-reserved=cpu=200m,memory=1G,驱逐条件--eviction hard=memory.available<500Mi。
附录
容器计算资源管理:https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
pod内存资源管理:https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
pod cpu资源管理:https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
服务质量QOS:https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
Docker关于CPU的限制:https://www.cnblogs.com/sparkdev/p/8052522.html
当你的才华撑不起你的野心时,你就应该静下心来学习
返回kubernetes系列教程目录