如何彻底搞懂jdk8线程池
这篇文章将为大家详细讲解有关如何彻底搞懂jdk8线程池,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
顶层设计,定义执行接口
Interface Executor(){ void execute(Runnable command);}
ExecutorService,定义控制接口
interface ExecutorService extends Executor{ }
抽象实现ExecutorService中的大部分方法
abstract class AbstractExecutorService implements ExecutorService{ //此处把ExecutorService中的提交方法都实现了}
我们看下提交中的核心
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { // ① //核心线程数没有满就继续添加核心线程 if (addWorker(command, true)) // ② return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { // ③ int recheck = ctl.get(); if (! isRunning(recheck) && remove(command))// ④ reject(command); //⑦ else if (workerCountOf(recheck) == 0) // ⑤ //如果worker为0,则添加一个非核心worker,所以线程池里至少有一个线程 addWorker(null, false);// ⑥ } //队列满了以后,添加非核心线程 else if (!addWorker(command, false))// ⑧ reject(command);//⑦ }
这里就会有几道常见的面试题
1,什么时候用核心线程,什么时候启用非核心线程?
添加任务时优先使用核心线程,核心线程满了以后,任务放入队列中。只要队列不填满,就一直使用核心线程执行任务(代码①②)。
当队列满了以后开始使用增加非核心线程来执行队列中的任务(代码⑧)。
2,0个核心线程,2个非核心线程,队列100,添加99个任务是否会执行?
会执行,添加队列成功后,如果worker的数量为0,会添加非核心线程执行任务(见代码⑤⑥)
3,队列满了会怎么样?
队列满了,会优先启用非核心线程执行任务,如果非核心线程也满了,那就执行拒绝策略。
4,submit 和execute的区别是?
submit将执行任务包装成了RunnableFuture,最终返回了Future,executor 方法执行无返回值。
addworker实现
ThreadPoolExecutor extends AbstractExecutorService{ //保存所有的执行线程(worker) HashSetworkers = new HashSet (); //存放待执行的任务,这块具体由指定的队列实现 BlockingQueue workQueue; public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler){ } //添加执行worker private boolean addWorker(Runnable firstTask, boolean core) { //这里每次都会基础校验和cas校验,防止并发无法创建线程, retry: for(;;){ for(;;){ if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; } } try{ //创建一个worker w = new Worker(firstTask); final Thread t = w.thread; try{ //加锁校验,添加到workers集合中 workers.add(w); } //添加成功,将对应的线程启动,执行任务 t.start(); }finally{ //失败执行进行释放资源 addWorkerFailed(Worker w) } } //Worker 是对任务和线程的封装 private final class Worker extends AbstractQueuedSynchronizer implements Runnable{ //线程启动后会循环执行任务 public void run() { runWorker(this); } } //循环执行 final void runWorker(Worker w) { try{ while (task != null || (task = getTask()) != null) { //执行前的可扩展点 beforeExecute(wt, task); try{ //执行任务 task.run(); }finally{ //执行后的可扩展点,这块也把异常给吃了 afterExecute(task, thrown); } } //这里会对执行的任务进行统计 }finally{ //异常或者是循环退出都会走这里 processWorkerExit(w, completedAbruptly); } } //获取执行任务,此处决定runWorker的状态 private Runnable getTask() { //worker的淘汰策略:允许超时或者工作线程>核心线程 boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; //满足淘汰策略且...,就返回null,交由processWorkerExit去处理线程 if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } // 满足淘汰策略,就等一定的时间poll(),不满足,就一直等待take() Runnable r = timed ?workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :workQueue.take(); } //处理任务退出(循环获取不到任务的时候) private void processWorkerExit(Worker w, boolean completedAbruptly) { //异常退出的,不能调整线程数的 if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted decrementWorkerCount(); //不管成功或失败,都执行以下逻辑 //1,计数,2,减去一个线程 completedTaskCount += w.completedTasks; //将线程移除,并不关心是否非核心 workers.remove(w); //如果是还是运行状态 if (!completedAbruptly) { //正常终止的,处理逻辑 int min = allowCoreThreadTimeOut ? 0 : corePoolSize; //核心线程为0 ,最小值也是1 if (min == 0 && ! workQueue.isEmpty()) min = 1; //总线程数大于min就不再添加 if (workerCountOf(c) >= min) return; // replacement not needed } //异常退出一定还会添加worker,正常退出一般不会再添加线程,除非核心线程数为0 addWorker(null, false); } }
这里涉及到几个点:
1,任务异常以后虽然有throw异常,但是外面有好几个finally代码;
2,在finally中,进行了任务的统计以及worker移除;
3,如果还有等待处理的任务,最少添加一个worker(不管核心线程数是否为0)
这里会引申出来几个面试题:
1, 线程池中核心线程数如何设置?
cpu密集型:一般为核心线程数+1,尽可能减少cpu的并行;
IO密集型:可以设置核心线程数稍微多些,将IO等待期间的空闲cpu充分利用起来。
2,线程池使用队列的意义?
a)线程的资源是有限的,且线程的创建成本比较高;
b) 要保证cpu资源的合理利用(不能直接给cpu提一堆任务,cpu处理不过来,大家都慢了)
c) 利用了削峰填谷的思想(保证任务执行的可用性);
d) 队列过大也会把内存撑爆。
3,为什么要用阻塞队列?而不是非阻塞队列?
a) 利用阻塞的特性,在没有任务时阻塞一定的时间,防止资源被释放(getTask和processWorkExit);
b) 阻塞队列在阻塞时,CPU状态是wait,等有任务时,会被唤醒,不会占用太多的资源;
线程池有两个地方:
1,在execute方法中(提交任务时),只要工作线程为0,就至少添加一个Worker;
2,在processWorkerExit中(正常或异常结束时),只要有待处理的任务,就会增加Worker
所以正常情况下线程池一定会保证所有任务的执行。
我们在看下ThreadPoolExecutor中以下几个方法
public boolean prestartCoreThread() { return workerCountOf(ctl.get()) < corePoolSize && addWorker(null, true); } void ensurePrestart() { int wc = workerCountOf(ctl.get()); if (wc < corePoolSize) addWorker(null, true); else if (wc == 0) addWorker(null, false); } public int prestartAllCoreThreads() { int n = 0; while (addWorker(null, true)) ++n; return n; }
确保了核心线程数必须是满的,这些方法特别是在批处理的时候,或者动态调整核心线程数的大小时很有用。
我们再看下Executors中常见的创建线程池的方法:
一、newFixedThreadPool 与newSingleThreadExecutor
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue()); } public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue ())); } public LinkedBlockingQueue() { this(Integer.MAX_VALUE); }
特点:
1,核心线程数和最大线程数大小一样(唯一不同的是,一个是1,一个是自定义);
2,队列用的是LinkedBlockingQueue(长度是Integer.Max_VALUE)
当任务的生产速度大于消费速度后,很容易将系统内存撑爆。
二、 newCachedThreadPool 和
public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue()); }
特点:最大线程数为Integer.MAX_VALUE
当任务提交过多时,线程创建过多容易导致无法创建
三、 newWorkStealingPool
public static ExecutorService newWorkStealingPool(int parallelism) { return new ForkJoinPool (parallelism, ForkJoinPool.defaultForkJoinWorkerThreadFactory, null, true); }
这个主要是并行度,默认为cpu的核数。
四、newScheduledThreadPool
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { return new ScheduledThreadPoolExecutor(corePoolSize); }
封装起来的要么最大线程数不可控,要么队列长度不可控,所以阿里规约里也不建议使用Executors方法创建线程池。
ps:
生产上使用线程池,最好是将关键任务和非关键任务分开设立线程池,非关键业务影响关键业务的执行。
关于如何彻底搞懂jdk8线程池就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。