千家信息网

numpy中轴与维度的详细介绍

发表于:2024-11-29 作者:千家信息网编辑
千家信息网最后更新 2024年11月29日,这篇文章主要讲解了"numpy中轴与维度的详细介绍",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"numpy中轴与维度的详细介绍"吧!NumPy's m
千家信息网最后更新 2024年11月29日numpy中轴与维度的详细介绍

这篇文章主要讲解了"numpy中轴与维度的详细介绍",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"numpy中轴与维度的详细介绍"吧!

NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes. The number of axes is rank.

For example, the coordinates of a point in 3D space [1, 2, 1] is an array of rank 1, because it has one axis. That axis has a length of 3. In the example pictured below, the array has rank 2 (it is 2-dimensional). The first dimension (axis) has a length of 2, the second dimension has a length of 3.

[[ 1., 0., 0.], [ 0., 1., 2.]]

ndarray.ndim

数组轴的个数,在python的世界中,轴的个数被称作秩

>> X = np.reshape(np.arange(24), (2, 3, 4))  # 也即 2 行 3 列的 4 个平面(plane)>> Xarray([[[ 0, 1, 2, 3],    [ 4, 5, 6, 7],    [ 8, 9, 10, 11]],    [[12, 13, 14, 15],    [16, 17, 18, 19],    [20, 21, 22, 23]]])

shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。

shape(x)

(2,3,4)

shape(x)[0]

2

或者

x.shape[0]

2

再来分别看每一个平面的构成:

>> X[:, :, 0]array([[ 0, 4, 8],    [12, 16, 20]])>> X[:, :, 1]array([[ 1, 5, 9],    [13, 17, 21]])>> X[:, :, 2]array([[ 2, 6, 10],    [14, 18, 22]])>> X[:, :, 3]array([[ 3, 7, 11],    [15, 19, 23]])

也即在对 np.arange(24)(0, 1, 2, 3, ..., 23) 进行重新的排列时,在多维数组的多个轴的方向上,先分配最后一个轴(对于二维数组,即先分配行的方向,对于三维数组即先分配平面的方向)

reshpae,是数组对象中的方法,用于改变数组的形状。

二维数组

#!/usr/bin/env python # coding=utf-8 import numpy as np  a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a d=a.reshape((2,4)) print d

三维数组

#!/usr/bin/env python # coding=utf-8 import numpy as np  a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a f=a.reshape((2, 2, 2)) print f

形状变化的原则是数组元素不能发生改变,比如这样写就是错误的,因为数组元素发生了变化。

#!/usr/bin/env python # coding=utf-8 import numpy as np  a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a print a.dtype e=a.reshape((2,2)) print e

注意:通过reshape生成的新数组和原始数组公用一个内存,也就是说,假如更改一个数组的元素,另一个数组也将发生改变。

#!/usr/bin/env python # coding=utf-8 import numpy as np  a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a e=a.reshape((2, 4)) print e a[1]=100 print a print e

Python中reshape函数参数-1的意思

a=np.arange(0, 60, 10)>>>aarray([0,10,20,30,40,50])>>>a.reshape(-1,1)array([[0],[10],[20],[30],[40],[50]])

如果写成a.reshape(1,1)就会报错

ValueError:cannot reshape array of size 6 into shape (1,1)

>>> a = np.array([[1,2,3], [4,5,6]])>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2array([[1, 2],    [3, 4],    [5, 6]])

-1表示我懒得计算该填什么数字,由python通过a和其他的值3推测出来。

# 下面是两张2*3大小的照片(不知道有几张照片用-1代替),如何把所有二维照片给摊平成一维>>> image = np.array([[[1,2,3], [4,5,6]], [[1,1,1], [1,1,1]]])>>> image.shape(2, 2, 3)>>> image.reshape((-1, 6))array([[1, 2, 3, 4, 5, 6],    [1, 1, 1, 1, 1, 1]])

感谢各位的阅读,以上就是"numpy中轴与维度的详细介绍"的内容了,经过本文的学习后,相信大家对numpy中轴与维度的详细介绍这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0