千家信息网

MySQL数据库查询中怎么实现多表查询

发表于:2024-11-27 作者:千家信息网编辑
千家信息网最后更新 2024年11月27日,今天小编给大家分享一下MySQL数据库查询中怎么实现多表查询的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面
千家信息网最后更新 2024年11月27日MySQL数据库查询中怎么实现多表查询

今天小编给大家分享一下MySQL数据库查询中怎么实现多表查询的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

    一、多表查询

    多表查询,也称为关联查询,指两个或更多个表一起完成查询操作。

    前提条件:这些一起查询的表之间是有关系的(一对一、一对多),它们之间一定是有关联字段,这个关联字段可能建立了外键,也可能没有建立外键。比如:员工表和部门表,这两个表依靠"部门编号"进行关联。

    1.引出

    假如我们现在要查询员工的姓名还有部门名称

    这两个字段在不同表中,如果没有关联条件的话,查询出来的结果会怎么样呢,让我们来看看。

    SELECT last_name, department_nameFROM employees, departments;+-----------+----------------------+| last_name | department_name      |+-----------+----------------------+| King      | Administration       || King      | Marketing            || King      | Purchasing           || King      | Human Resources      || King      | Shipping             || King      | IT                   || King      | Public Relations     || King      | Sales                || King      | Executive            || King      | Finance              || King      | Accounting           || King      | Treasury             |...| Gietz     | IT Support           || Gietz     | NOC                  || Gietz     | IT Helpdesk          || Gietz     | Government Sales     || Gietz     | Retail Sales         || Gietz     | Recruiting           || Gietz     | Payroll              |+-----------+----------------------+2889 rows in set (0.01 sec)
    SELECT COUNT(employee_id) FROM employees;#输出107行SELECT COUNT(department_id)FROM departments;#输出27行SELECT 107*27 FROM dual;107*27=2889

    很明显上面的操作是错误的

    上面的操作,会导致员工表的一条记录会和部门表的每一条记录相匹配,就好像一个员工在所有部门都工作过一样,从现实角度来说,很明显,是不会出现这种情况的,
    这种现象就是笛卡尔积。

    2.笛卡尔积

    笛卡儿积就是关系代数里的一个概念,表示两个表中的每一行数据任意组合的结果。比如:有两个表,左表有m条数据记录,x个字段,右表有n条数据记录,y个字段,则执行交叉连接后将返回m*n条数据记录,x+y个字段。笛卡儿积示意图如图所示。

    SQL92中,笛卡尔积也称为交叉连接,英文是 CROSS JOIN。在 SQL99 中也是使用 CROSS JOIN表示交叉连接。它的作用就是可以把任意表进行连接,即使这两张表不相关。在MySQL中如下情况会出现笛卡尔积:
    查询员工姓名和所在部门名称

    SELECT last_name,department_name FROM employees,departments;SELECT last_name,department_name FROM employees CROSS JOIN departments;SELECT last_name,department_name FROM employees INNER JOIN departments;SELECT last_name,department_name FROM employees JOIN departments;

    3. 笛卡尔积的解决方法

    笛卡尔积的错误会在下面条件下产生

    • 笛卡尔积的错误会在下面条件下产生

      • 省略多个表的连接条件(或关联条件)

      • 连接条件(或关联条件)无效

      • 所有表中的所有行互相连接

    • 为了避免笛卡尔积, 可以在 WHERE 加入有效的连接条件。

    SELECT table1.column, table2.columnFROM    table1, table2WHERE   table1.column1 = table2.column2;  #连接条件
    #案例:查询员工的姓名及其部门名称SELECT last_name, department_nameFROM employees, departmentsWHERE employees.department_id = departments.department_id;

    注意:如果不同的表中有相同的字段,我们要声明我们查的是哪一张表的字段,表名.字段名这个和Java中,类名.属性是类似的,挺好理解的。

    SELECT employees.last_name, departments.department_name,employees.department_idFROM employees, departmentsWHERE employees.department_id = departments.department_id;

    二、多表查询分类

    1.等值连接和非等值连接

    等值连接其实很好理解,就是谁等于谁的意思,使用=。
    非等值连接的话,比如查询某个字段>某个值的记录等等

    SELECT employees.employee_id, employees.last_name,       employees.department_id, departments.department_id,    departments.location_idFROM   employees, departmentsWHERE  employees.department_id = departments.department_id;

    拓展:

    使用别名可以简化查询。— 有的字段名太长了列名前使用表名前缀可以提高查询效率。
    SELECT e.employee_id, e.last_name, e.department_id,d.department_id, d.location_idFROM   employees e , departments dWHERE  e.department_id = d.department_id;

    需要注意的是,如果我们使用了表的别名,在查询字段中、过滤条件中就只能使用别名进行代替,不能使用原有的表名,否则就会报错。

    2.自连接和非自连接

    自连接,它的字面意思就是自己和自己连接
    比如说现在有一张表,我们想要查找员工信息和对应的上级信息
    我们知道,只有一张表是没办法把它们关联起来的,要想把它们他们关联起来,肯定是要有关联条件的,那么就应该要有两张表,这个时候,我们就可以抽取出一张表,和本来的表本质上是一样的,然后我们对表起别名,table1和table2本质上是同一张表,只是用取别名的方式虚拟成两张表以代表不同的意义。然后两个表再进行内连接,外连接等查询。

    比如说:现在我们想要查找员工和对应老板的名字,我们就可以使用自连接

    SELECT CONCAT(worker.last_name ,' works for '    , manager.last_name)FROM   employees worker, employees managerWHERE  worker.manager_id = manager.employee_id ;

    练习:查询出last_name为 ‘Chen’ 的员工的 manager 的信息。

    3.内连接和外连接

    内连接: 合并具有同一列的两个以上的表的行, 结果集中不包含一个表与另一个表不匹配的行

    外连接: 两个表在连接过程中除了返回满足连接条件的行以外还返回左(或右)表中不满足条件的行 ,这种连接称为左(或右) 外连接。没有匹配的行时, 结果表中相应的列为空(NULL)。

    如果是左外连接,则连接条件中左边的表也称为主表,右边的表称为从表。

    如果是右外连接,则连接条件中右边的表也称为主表,左边的表称为从表。

    外连接查询的数据比较多

    SQL92:使用(+)创建连接

    在 SQL92 中采用(+)代表从表所在的位置。即左或右外连接中,(+) 表示哪个是从表。

    Oracle 对 SQL92 支持较好,而 MySQL 则不支持 SQL92 的外连接。

    #左外连接SELECT last_name,department_name FROM employees ,departments  WHERE  employees.department_id = departments.department_id(+);#右外连接 SELECT last_name,department_name FROM employees ,departments WHERE employees.department_id(+) = departments.department_id;  ```

    SQL99语法实现多表查询

    1.基本语法
    使用JOIN…ON子句创建连接的语法结构:

    SELECT table1.column, table2.column,table3.column FROM table1    JOIN table2 ON table1 和 table2 的连接条件        JOIN table3 ON table2 和 table3 的连接条件

    语法说明:

    可以使用 ON 子句指定额外的连接条件 。

    这个连接条件是与其它条件分开的。ON 子句使语句具有更高的易读性。关键字 JOIN、INNER JOIN、CROSS JOIN 的含义是一样的,都表示内连接

    2.内连接(INNER JOIN)

    语法
    select 字段
    from 表1
    join 表2 on 两个表的连接条件
    where 其他子句

    比如我们现在想要查询各个部门的员工的信息,他们的连接条件就是员工表中部门id和部门表中的部门id一样

    SELECT e.employee_id, e.last_name, e.department_id,        d.department_id, d.location_idFROM   employees e JOIN departments dON     (e.department_id = d.department_id);这里截取部分结果+-------------+-------------+---------------+---------------+-------------+| employee_id | last_name   | department_id | department_id | location_id |+-------------+-------------+---------------+---------------+-------------+|         103 | Hunold      |            60 |            60 |        1400 ||         104 | Ernst       |            60 |            60 |        1400 ||         105 | Austin      |            60 |            60 |        1400 ||         106 | Pataballa   |            60 |            60 |        1400 ||         107 | Lorentz     |            60 |            60 |        1400 ||         120 | Weiss       |            50 |            50 |        1500 ||         121 | Fripp       |            50 |            50 |        1500 ||         122 | Kaufling    |            50 |            50 |        1500 ||         123 | Vollman     |            50 |            50 |        1500 ||         124 | Mourgos     |            50 |            50 |        1500 ||         125 | Nayer       |            50 |            50 |        1500 ||         126 | Mikkilineni |            50 |            50 |        1500 ||         127 | Landry      |            50 |            50 |        1500 ||         128 | Markle      |            50 |            50 |        1500 ||         129 | Bissot      |            50 |            50 |        1500 |

    使用内连接的一个问题就是他们把所有的信息都显示出来,它只能够显示匹配的数据,而外连接可以把不匹配的数据也显示出来

    先来看看表的数据,方便后续操作

    mysql> select * from emp;+-------+--------+-----------+------+------------+---------+---------+--------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO |+-------+--------+-----------+------+------------+---------+---------+--------+|  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |+-------+--------+-----------+------+------------+---------+---------+--------+14 rows in set (0.00 sec)
    mysql> select * from dept;+--------+------------+----------+| DEPTNO | DNAME      | LOC      |+--------+------------+----------+|     10 | ACCOUNTING | NEW YORK ||     20 | RESEARCH   | DALLAS   ||     30 | SALES      | CHICAGO  ||     40 | OPERATIONS | BOSTON   |+--------+------------+----------+4 rows in set (0.00 sec)
    mysql> select * from emp e    -> join dept d    -> on e.deptno=e.deptno;+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO | DEPTNO | DNAME      | LOC      |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+|  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     10 | ACCOUNTING | NEW YORK ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     10 | ACCOUNTING | NEW YORK ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     10 | ACCOUNTING | NEW YORK ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     10 | ACCOUNTING | NEW YORK ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     10 | ACCOUNTING | NEW YORK ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     10 | ACCOUNTING | NEW YORK ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     10 | ACCOUNTING | NEW YORK ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     10 | ACCOUNTING | NEW YORK ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     10 | ACCOUNTING | NEW YORK ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     10 | ACCOUNTING | NEW YORK ||  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     10 | ACCOUNTING | NEW YORK ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     20 | RESEARCH   | DALLAS   ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     20 | RESEARCH   | DALLAS   ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     20 | RESEARCH   | DALLAS   ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     20 | RESEARCH   | DALLAS   ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     20 | RESEARCH   | DALLAS   ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     20 | RESEARCH   | DALLAS   ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     20 | RESEARCH   | DALLAS   ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     20 | RESEARCH   | DALLAS   ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     20 | RESEARCH   | DALLAS   ||  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     30 | SALES      | CHICAGO  ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     30 | SALES      | CHICAGO  ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     30 | SALES      | CHICAGO  ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     30 | SALES      | CHICAGO  ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     30 | SALES      | CHICAGO  ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     30 | SALES      | CHICAGO  ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     30 | SALES      | CHICAGO  ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     30 | SALES      | CHICAGO  ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     30 | SALES      | CHICAGO  ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     30 | SALES      | CHICAGO  ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     30 | SALES      | CHICAGO  ||  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     30 | SALES      | CHICAGO  ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     40 | OPERATIONS | BOSTON   ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     40 | OPERATIONS | BOSTON   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     40 | OPERATIONS | BOSTON   ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     40 | OPERATIONS | BOSTON   ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     40 | OPERATIONS | BOSTON   ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     40 | OPERATIONS | BOSTON   ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     40 | OPERATIONS | BOSTON   ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     40 | OPERATIONS | BOSTON   ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     40 | OPERATIONS | BOSTON   ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     40 | OPERATIONS | BOSTON   ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     40 | OPERATIONS | BOSTON   ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     40 | OPERATIONS | BOSTON   ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     40 | OPERATIONS | BOSTON   ||  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     40 | OPERATIONS | BOSTON   |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+56 rows in set (0.01 sec)

    – 问题:
    – 1.40号部分没有员工,没有显示在查询结果中
    – 2.员工scott没有部门,没有显示在查询结果中
    所以想显示所有数据,要使用外连接

    外连接(OUTER JOIN)
    1.左外连接

    左外连接: left outer join – 左面的那个表的信息,即使不匹配也可以查看出效果
    SELECT 字段列表
    FROM A表 LEFT JOIN B表
    ON 关联条件
    WHERE 等其他子句;

    2.右外连接
    SELECT 字段列表
    FROM A表 RIGHT JOIN B表
    ON 关联条件
    WHERE 等其他子句;

    mysql> select *    -> from emp e    -> right outer join dept d    -> on e.deptno = d.deptno;+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO | DEPTNO | DNAME      | LOC      |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+|  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     30 | SALES      | CHICAGO  ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     30 | SALES      | CHICAGO  ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     30 | SALES      | CHICAGO  ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     30 | SALES      | CHICAGO  ||  NULL | NULL   | NULL      | NULL | NULL       |    NULL |    NULL |   NULL |     40 | OPERATIONS | BOSTON   |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+15 rows in set (0.00 sec)

    3.满外连接(FULL OUTER JOIN)

    满外连接的结果 = 左右表匹配的数据 + 左表没有匹配到的数据 + 右表没有匹配到的数据。
    SQL99是支持满外连接的。使用FULL JOIN 或 FULL OUTER JOIN来实现。
    需要注意的是,MySQL不支持FULL JOIN,但是可以用 LEFT JOIN UNION RIGHT join代替。
    在讲满外连接之前,我们先来介绍一下union关键字的使用,相信看了以后大家就清楚了

    4.UNION

    合并查询结果

    利用UNION关键字,可以给出多条SELECT语句,并将它们的结果组合成单个结果集。合并时,两个表对应的列数和数据类型必须相同,并且相互对应。各个SELECT语句之间使用UNION或UNION ALL关键字分隔。

    语法格式:

    SELECT column,… FROM table1
    UNION [ALL]
    SELECT column,… FROM table2

    UNION操作符

    UNION 操作符返回两个查询的结果集的并集,去除重复记录。

    `UNION ALL操作符

    UNION ALL操作符返回两个查询的结果集的并集。对于两个结果集的重复部分,不去重。

    注意:执行UNION ALL语句时所需要的资源比UNION语句少。如果明确知道合并数据后的结果数据不存在重复数据,或者不需要去除重复的数据,则尽量使用UNION ALL语句,以提高数据查询的效率。
    为什么union all的效率比较高呢?首先我们如果使用union的话,它会先把数据查询出来,紧接着还要进去去重操作,它多了一步去重操作,当然花费的时间就比较多了,影响效率。

    mysql> select *    -> from emp e    -> left outer join dept d    -> on e.deptno = d.deptno    -> union -- 并集 去重 效率低    -> select *    -> from emp e    -> right outer join dept d    -> on e.deptno = d.deptno;+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO | DEPTNO | DNAME      | LOC      |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+|  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     30 | SALES      | CHICAGO  ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     30 | SALES      | CHICAGO  ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     30 | SALES      | CHICAGO  ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     30 | SALES      | CHICAGO  ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  NULL | NULL   | NULL      | NULL | NULL       |    NULL |    NULL |   NULL |     40 | OPERATIONS | BOSTON   |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+15 rows in set (0.01 sec)mysql> ^Cmysql> https://blog.csdn.net/weixin_42250835/article/details/123535439^Z^Z^Cmysql> select *    -> from emp e    -> left outer join dept d    -> on e.deptno = d.deptno    -> union -- 并集 去重 效率低    -> select *    -> from emp e    -> right outer join dept d    -> on e.deptno = d.deptno;+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO | DEPTNO | DNAME      | LOC      |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+|  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     30 | SALES      | CHICAGO  ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     30 | SALES      | CHICAGO  ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     30 | SALES      | CHICAGO  ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     30 | SALES      | CHICAGO  ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  NULL | NULL   | NULL      | NULL | NULL       |    NULL |    NULL |   NULL |     40 | OPERATIONS | BOSTON   |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+15 rows in set (0.00 sec)mysql> select *    -> from emp e    -> left outer join dept d    -> on e.deptno = d.deptno    -> union all-- 并集 不去重 效率高    -> select *    -> from emp e    -> right outer join dept d    -> on e.deptno = d.deptno;+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO | DEPTNO | DNAME      | LOC      |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+|  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     30 | SALES      | CHICAGO  ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     30 | SALES      | CHICAGO  ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     30 | SALES      | CHICAGO  ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     30 | SALES      | CHICAGO  ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     30 | SALES      | CHICAGO  ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     30 | SALES      | CHICAGO  ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     30 | SALES      | CHICAGO  ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     30 | SALES      | CHICAGO  ||  NULL | NULL   | NULL      | NULL | NULL       |    NULL |    NULL |   NULL |     40 | OPERATIONS | BOSTON   |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+29 rows in set (0.00 sec)

    为了让大家更清楚知道他们的区别,我们分别看一下有多少记录

        -> on e.deptno = d.deptno' at line 2mysql> select *    -> from emp e    -> left outer join dept d    -> on e.deptno = d.deptno;+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO | DEPTNO | DNAME      | LOC      |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+|  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     30 | SALES      | CHICAGO  ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     30 | SALES      | CHICAGO  ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     30 | SALES      | CHICAGO  ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     30 | SALES      | CHICAGO  ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+14 rows in set (0.00 sec)mysql> select *    -> from emp e    -> right outer join dept d    -> on e.deptno = d.deptno;+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO | DEPTNO | DNAME      | LOC      |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+|  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 |     10 | ACCOUNTING | NEW YORK ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 |     20 | RESEARCH   | DALLAS   ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 |     30 | SALES      | CHICAGO  ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 |     30 | SALES      | CHICAGO  ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 |     30 | SALES      | CHICAGO  ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 |     30 | SALES      | CHICAGO  ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 |     30 | SALES      | CHICAGO  ||  NULL | NULL   | NULL      | NULL | NULL       |    NULL |    NULL |   NULL |     40 | OPERATIONS | BOSTON   |+-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+15 rows in set (0.00 sec)

    14+15=29所=所以可以看出union all确实是不去重


     中图:内连接 A∩BSELECT employee_id,last_name,department_nameFROM employees e JOIN departments dON e.`department_id` = d.`department_id`;
     左上图:左外连接SELECT employee_id,last_name,department_nameFROM employees e LEFT JOIN departments dON e.`department_id` = d.`department_id`;
     右上图:右外连接SELECT employee_id,last_name,department_nameFROM employees e RIGHT JOIN departments dON e.`department_id` = d.`department_id`;
     左中图:A - A∩BSELECT employee_id,last_name,department_nameFROM employees e LEFT JOIN departments dON e.`department_id` = d.`department_id`WHERE d.`department_id` IS NULL
     右中图:B-A∩BSELECT employee_id,last_name,department_nameFROM employees e RIGHT JOIN departments dON e.`department_id` = d.`department_id`WHERE e.`department_id` IS NULL
     左下图:满外连接  左中图 + 右上图  A∪BSELECT employee_id,last_name,department_nameFROM employees e LEFT JOIN departments dON e.`department_id` = d.`department_id`WHERE d.`department_id` IS NULLUNION ALL  #没有去重操作,效率高SELECT employee_id,last_name,department_nameFROM employees e RIGHT JOIN departments dON e.`department_id` = d.`department_id`;
     右下图 左中图 + 右中图  A ∪B- A∩B 或者 (A -  A∩B) ∪ (B - A∩B)SELECT employee_id,last_name,department_nameFROM employees e LEFT JOIN departments dON e.`department_id` = d.`department_id`WHERE d.`department_id` IS NULLUNION ALLSELECT employee_id,last_name,department_nameFROM employees e RIGHT JOIN departments dON e.`department_id` = d.`department_id`WHERE e.`department_id` IS NULL

    4.自然连接

    SQL99 在 SQL92 的基础上提供了一些特殊语法,比如 NATURAL JOIN 用来表示自然连接。我们可以把自然连接理解为 SQL92 中的等值连接。它会帮你自动查询两张连接表中所有相同的字段,然后进行等值连接

    SELECT employee_id,last_name,department_nameFROM employees e NATURAL JOIN departments d;

    上面的写法的效果和下面是一样的

    SELECT employee_id,last_name,department_nameFROM employees e JOIN departments dUSING (department_id);

    5.using连接

    当我们进行连接的时候,SQL99还支持使用 USING 指定数据表里的同名字段进行等值连接。但是只能配合JOIN一起使用。比如:

    SELECT employee_id,last_name,department_nameFROM employees e JOIN departments dUSING (department_id);

    你能看出与自然连接 NATURAL JOIN 不同的是,USING 指定了具体的相同的字段名称,你需要在 USING 的括号 () 中填入要指定的同名字段。同时使用 JOIN...USING 可以简化 JOIN ON 的等值连接。它与下面的 SQL 查询结果是相同的:

    SELECT employee_id,last_name,department_nameFROM employees e ,departments dWHERE e.department_id = d.department_id;

    注意:using只能和join配合使用,而且要求两个关联字段在关联表中名称一致,而且只能表示关联字段值相等

    三、子查询

    1.不相关子查询

    子查询就是查询语句的嵌套,有多个select语句

    子查询的引入:

    – 查询所有比"CLARK"工资高的员工的信息

    – 步骤1:"CLARK"工资

    mysql> select * from emp where ename='clark';  工资2450+-------+-------+---------+------+------------+---------+------+--------+| EMPNO | ENAME | JOB     | MGR  | HIREDATE   | SAL     | COMM | DEPTNO |+-------+-------+---------+------+------------+---------+------+--------+|  7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL |     10 |+-------+-------+---------+------+------------+---------+------+--------+1 row in set (0.00 sec)

    – 步骤2:查询所有工资比2450高的员工的信息

    mysql> select * from emp where sal > 2450;+-------+-------+-----------+------+------------+---------+------+--------+| EMPNO | ENAME | JOB       | MGR  | HIREDATE   | SAL     | COMM | DEPTNO |+-------+-------+-----------+------+------------+---------+------+--------+|  7566 | JONES | MANAGER   | 7839 | 1981-04-02 | 2975.00 | NULL |     20 ||  7698 | BLAKE | MANAGER   | 7839 | 1981-05-01 | 2850.00 | NULL |     30 ||  7788 | SCOTT | ANALYST   | 7566 | 1987-04-19 | 3000.00 | NULL |     20 ||  7839 | KING  | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL |     10 ||  7902 | FORD  | ANALYST   | 7566 | 1981-12-03 | 3000.00 | NULL |     20 |+-------+-------+-----------+------+------------+---------+------+--------+5 rows in set (0.01 sec)

    两次命令解决问题的话,效率低 ,第二个命令依托于第一个命令,第一个命令的结果给第二个命令使用,但是
    因为第一个命令的结果可能不确定要改,所以第二个命令也会导致修改
    将步骤1和步骤2合并 --》子查询:-- 一个命令解决问题 --》效率高

    mysql> select *from emp where sal>(select sal from emp where ename='clark');+-------+-------+-----------+------+------------+---------+------+--------+| EMPNO | ENAME | JOB       | MGR  | HIREDATE   | SAL     | COMM | DEPTNO |+-------+-------+-----------+------+------------+---------+------+--------+|  7566 | JONES | MANAGER   | 7839 | 1981-04-02 | 2975.00 | NULL |     20 ||  7698 | BLAKE | MANAGER   | 7839 | 1981-05-01 | 2850.00 | NULL |     30 ||  7788 | SCOTT | ANALYST   | 7566 | 1987-04-19 | 3000.00 | NULL |     20 ||  7839 | KING  | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL |     10 ||  7902 | FORD  | ANALYST   | 7566 | 1981-12-03 | 3000.00 | NULL |     20 |+-------+-------+-----------+------+------------+---------+------+--------+5 rows in set (0.00 sec)

    【2】执行顺序:

    先执行子查询,再执行外查询;

    【3】不相关子查询:

    子查询可以独立运行,称为不相关子查询。

    【4】不相关子查询分类:

    根据子查询的结果行数,可以分为单行子查询和多行子查询。

    练习

    单行子查询

    mysql> -- 单行子查询mysql> -- 查询工资高与拼接工资的员工名字和工资mysql> select ename,sal from emp    -> where sal>(select avg(sal) from emp);+-------+---------+| ename | sal     |+-------+---------+| JONES | 2975.00 || BLAKE | 2850.00 || CLARK | 2450.00 || SCOTT | 3000.00 || KING  | 5000.00 || FORD  | 3000.00 |+-------+---------+6 rows in set (0.00 sec)
    -- 查询和CLARK同一部门且比他工资低的雇员名字和工资。select ename,salfrom empwhere deptno = (select deptno from emp where ename = 'CLARK')       and       sal < (select sal from emp where ename = 'CLARK')+--------+---------+| ename  | sal     |+--------+---------+| MILLER | 1300.00 |+--------+---------+1 row in set (0.00 sec)
      多行子查询:  【1】查询【部门20中职务同部门10的雇员一样的】雇员信息。-- 查询雇员信息select * from emp;+-------+--------+-----------+------+------------+---------+---------+--------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO |+-------+--------+-----------+------+------------+---------+---------+--------+|  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |+-------+--------+-----------+------+------------+---------+---------+--------+14 rows in set (0.00 sec)-- 查询部门20中的雇员信息select * from emp where deptno = 20;+-------+-------+---------+------+------------+---------+------+--------+| EMPNO | ENAME | JOB     | MGR  | HIREDATE   | SAL     | COMM | DEPTNO |+-------+-------+---------+------+------------+---------+------+--------+|  7369 | SMITH | CLERK   | 7902 | 1980-12-17 |  800.00 | NULL |     20 ||  7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL |     20 ||  7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL |     20 ||  7876 | ADAMS | CLERK   | 7788 | 1987-05-23 | 1100.00 | NULL |     20 ||  7902 | FORD  | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL |     20 |+-------+-------+---------+------+------------+---------+------+--------+5 rows in set (0.00 sec)-- 部门10的雇员的职务:select job from emp where deptno = 10; -- MANAGER,PRESIDENT,CLERK+-----------+| job       |+-----------+| MANAGER   || PRESIDENT || CLERK     |+-----------+3 rows in set (0.00 sec)-- 查询部门20中职务同部门10的雇员一样的雇员信息。select * from emp where deptno = 20 and job in (select job from emp where deptno = 10)-- > Subquery returns more than 1 rowselect * from emp where deptno = 20 and job = any(select job from emp where deptno = 10)
     【2】查询工资比所有的"SALESMAN"都高的雇员的编号、名字和工资。-- 查询雇员的编号、名字和工资select empno,ename,sal from emp+-------+--------+---------+| empno | ename  | sal     |+-------+--------+---------+|  7369 | SMITH  |  800.00 ||  7499 | ALLEN  | 1600.00 ||  7521 | WARD   | 1250.00 ||  7566 | JONES  | 2975.00 ||  7654 | MARTIN | 1250.00 ||  7698 | BLAKE  | 2850.00 ||  7782 | CLARK  | 2450.00 ||  7788 | SCOTT  | 3000.00 ||  7839 | KING   | 5000.00 ||  7844 | TURNER | 1500.00 ||  7876 | ADAMS  | 1100.00 ||  7900 | JAMES  |  950.00 ||  7902 | FORD   | 3000.00 ||  7934 | MILLER | 1300.00 |+-------+--------+---------+14 rows in set (0.00 sec)-- "SALESMAN"的工资:select sal from emp where job = 'SALESMAN';+---------+| sal     |+---------+| 1600.00 || 1250.00 || 1250.00 || 1500.00 |+---------+4 rows in set (0.00 sec)-- 查询工资比所有的"SALESMAN"都高的雇员的编号、名字和工资。-- 多行子查询:select empno,ename,sal from emp where sal > all(select sal from emp where job = 'SALESMAN');+-------+-------+---------+| empno | ename | sal     |+-------+-------+---------+|  7566 | JONES | 2975.00 ||  7698 | BLAKE | 2850.00 ||  7782 | CLARK | 2450.00 ||  7788 | SCOTT | 3000.00 ||  7839 | KING  | 5000.00 ||  7902 | FORD  | 3000.00 |+-------+-------+---------+6 rows in set (0.00 sec)

    2.相关子查询

    【1】不相关的子查询引入:

    不相关的子查询:子查询可以独立运行,先运行子查询,再运行外查询。

    相关子查询:子查询不可以独立运行,并且先运行外查询,再运行子查询

    【2】不相关的子查询优缺点:

    好处:简单 功能强大(一些使用不相关子查询不能实现或者实现繁琐的子查询,可以使用相关子查询实现)

    缺点:稍难理解

    【3】sql展示:

    -- 【1】查询最高工资的员工  (不相关子查询)select * from emp where sal = (select max(sal) from emp)-- 【2】查询本部门最高工资的员工   (相关子查询)-- 方法1:通过不相关子查询实现:select * from emp where deptno = 10 and sal = (select max(sal) from emp where deptno = 10)unionselect * from emp where deptno = 20 and sal = (select max(sal) from emp where deptno = 20)unionselect * from emp where deptno = 30 and sal = (select max(sal) from emp where deptno = 30)-- 缺点:语句比较多,具体到底有多少个部分未知-- 方法2: 相关子查询select * from emp e where sal = (select max(sal) from emp where deptno = e.deptno) order by deptno-- 【3】查询工资高于其所在岗位的平均工资的那些员工  (相关子查询)-- 不相关子查询:select * from emp where job = 'CLERK' and sal >= (select avg(sal) from emp where job = 'CLERK')union ......-- 相关子查询:select * from emp e where sal >= (select avg(sal) from emp e2 where e2.job = e.job)

    四、聚合函数

    1.聚合函数介绍

    聚合函数作用于一组数据,并对一组数据返回一个值。

    聚合函数类型

    • AVG()

    • SUM()

    • MAX()

    • MIN()

    • COUNT()

    语法

    注意:聚合函数不允许嵌套使用

    1.1 AVG和SUM函数

    可以对数值型数据使用AVG 和 SUM 函数。

    他们在计算有空值的时候,会把非空计算进去,然后自动忽略空值
    AVG=SUM/COUNT

    mysql> select * from emp;+-------+--------+-----------+------+------------+---------+---------+--------+| EMPNO | ENAME  | JOB       | MGR  | HIREDATE   | SAL     | COMM    | DEPTNO |+-------+--------+-----------+------+------------+---------+---------+--------+|  7369 | SMITH  | CLERK     | 7902 | 1980-12-17 |  800.00 |    NULL |     20 ||  7499 | ALLEN  | SALESMAN  | 7698 | 1981-02-20 | 1600.00 |  300.00 |     30 ||  7521 | WARD   | SALESMAN  | 7698 | 1981-02-22 | 1250.00 |  500.00 |     30 ||  7566 | JONES  | MANAGER   | 7839 | 1981-04-02 | 2975.00 |    NULL |     20 ||  7654 | MARTIN | SALESMAN  | 7698 | 1981-09-28 | 1250.00 | 1400.00 |     30 ||  7698 | BLAKE  | MANAGER   | 7839 | 1981-05-01 | 2850.00 |    NULL |     30 ||  7782 | CLARK  | MANAGER   | 7839 | 1981-06-09 | 2450.00 |    NULL |     10 ||  7788 | SCOTT  | ANALYST   | 7566 | 1987-04-19 | 3000.00 |    NULL |     20 ||  7839 | KING   | PRESIDENT | NULL | 1981-11-17 | 5000.00 |    NULL |     10 ||  7844 | TURNER | SALESMAN  | 7698 | 1981-09-08 | 1500.00 |    0.00 |     30 ||  7876 | ADAMS  | CLERK     | 7788 | 1987-05-23 | 1100.00 |    NULL |     20 ||  7900 | JAMES  | CLERK     | 7698 | 1981-12-03 |  950.00 |    NULL |     30 ||  7902 | FORD   | ANALYST   | 7566 | 1981-12-03 | 3000.00 |    NULL |     20 ||  7934 | MILLER | CLERK     | 7782 | 1982-01-23 | 1300.00 |    NULL |     10 |+-------+--------+-----------+------+------------+---------+---------+--------+14 rows in set (0.00 sec)

    1.2 MIN和MAX函数

    可以对任意数据类型的数据使用 MIN 和 MAX 函数。

    1.3 COUNT函数

    COUNT(*)返回表中记录总数,适用于任意数据类型

    mysql> select count(*) from emp;+----------+| count(*) |+----------+|       14 |+----------+1 row in set (0.01 sec)

    计算指定字段再查询结果中出现的个数

    mysql> select count(comm) from emp;+-------------+| count(comm) |+-------------+|           4 |+-------------+1 row in set (0.00 sec)

    COUNT(expr) 返回expr不为空的记录总数。

    -问题:用count(*),count(1),count(列名)谁好呢?

    其实,对于MyISAM引擎的表是没有区别的。这种引擎内部有一计数器在维护着行数。

    Innodb引擎的表用count(*),count(1)直接读行数,复杂度是O(n),因为innodb真的要去数一遍。但好于具体的count(列名)。

    问题:能不能使用count(列名)替换count(*)?

    不要使用 count(列名)来替代 count(*)count(*)是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。

    说明: count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。
    这样子讲的话,大家可能还比较懵,接下来,我来演示一下

    2.group by

    使用group by可以进行分组,我们以前使用avg可以求出所有员工的平均工资,但是如果我们想要求各个部门的员工的平均工资的话,就得对部门进行分组,以部门为单位来划分,然后求出他们各自的平均工资
    注意:字段不可以和多行函数一起使用,因为记录个数不匹配,这样就会导致查询的数据没有全部展示,但是,如果这个字段属于分组是可以的

    mysql> select deptno,avg(sal) from emp group by deptno;+--------+-------------+| deptno | avg(sal)    |+--------+-------------+|     20 | 2175.000000 ||     30 | 1566.666667 ||     10 | 2916.666667 |+--------+-------------+3 rows in set (0.00 sec)
    统计各个岗位的平均工资mysql> select job,avg(sal) from emp group by job;+-----------+-------------+| job       | avg(sal)    |+-----------+-------------+| CLERK     | 1037.500000 || SALESMAN  | 1400.000000 || MANAGER   | 2758.333333 || ANALYST   | 3000.000000 || PRESIDENT | 5000.000000 |+-----------+-------------+5 rows in set (0.00 sec)

    3.使用having进行分组后的筛选

    使用having的条件:

    1 行已经被分组。

    2. 使用了聚合函数。

    3. 满足HAVING 子句中条件的分组将被显示。

    4. HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。

    统计各个部门的平均工资 ,只显示平均工资2000以上的 - 分组以后进行二次筛选 having

    mysql> select deptno,avg(sal) from emp    -> group by deptno    -> having avg(sal) >2000;+--------+-------------+| deptno | avg(sal)    |+--------+-------------+|     20 | 2175.000000 ||     10 | 2916.666667 |+--------+-------------+2 rows in set (0.01 sec)

    五、where和having的对比

    区别1:WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。

    这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。这是因为,在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成的。另外,WHERE排除的记录不再包括在分组中。

    区别2:如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。 这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING 则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。

    小结如下:

    开发中的选择:

    WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。

    六、select的执行过程

    1.关键字顺序

    SELECT … FROM … WHERE … GROUP BY … HAVING … ORDER BY … LIMIT…

    2.SELECT 语句的执行顺序

    FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT

    比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的:

    SELECT DISTINCT player_id, player_name, count(*) as num  顺序 5FROM player JOIN team ON player.team_id = team.team_id   顺序 1WHERE height > 1.80  顺序 2GROUP BY player.team_id   顺序 3HAVING num > 2  顺序 4ORDER BY num DESC   顺序 6LIMIT 2   顺序 7

    3.SQL的执行原理(先了解)

    SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:

    1. 首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1;

    2. 通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2;

    3. 添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3。

    当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得到是我们的原始数据。

    当我们拿到了查询数据表的原始数据,也就是最终的虚拟表 vt1,就可以在此基础上再进行 WHERE 阶段。在这个阶段中,会根据 vt1 表的结果进行筛选过滤,得到虚拟表 vt2。

    然后进入第三步和第四步,也就是 GROUP 和 HAVING 阶段。在这个阶段中,实际上是在虚拟表 vt2 的基础上进行分组和分组过滤,得到中间的虚拟表 vt3 和 vt4。

    当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到 SELECT 和 DISTINCT 阶段。

    首先在 SELECT 阶段会提取想要的字段,然后在 DISTINCT 阶段过滤掉重复的行,分别得到中间的虚拟表 vt5-1 和 vt5-2。

    当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是 ORDER BY 阶段,得到虚拟表 vt6。

    最后在 vt6 的基础上,取出指定行的记录,也就是 LIMIT 阶段,得到最终的结果,对应的是虚拟表 vt7。

    当然我们在写 SELECT 语句的时候,不一定存在所有的关键字,相应的阶段就会省略。

    同时因为 SQL 是一门类似英语的结构化查询语言,所以我们在写 SELECT 语句的时候,还要注意相应的关键字顺序,所谓底层运行的原理,就是我们刚才讲到的执行顺序。

    以上就是"MySQL数据库查询中怎么实现多表查询"这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注行业资讯频道。

    0