PyTorch1.3和TensorFlow 2.0的示例分析
本篇文章为大家展示了PyTorch1.3和TensorFlow 2.0的示例分析,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
尽管如此,我还是认为PyTorch对研究者更加友好,更适合快速实现新方法,并且改进了与C++的兼容性。TensorFlow的优势仍然是Google生态系统(TFLite,Android的TFLite,TPU等)的集成。但是,无论我使用哪个,仍然存在很多问题,这些问题主要与Python相关。
PyTorch声称它不是用于C++框架的API,然而,一旦构建它,和Cython以及Numba一起使用,就可以了。如果我们通过名为TensorFlow.jl的Julia API 使用TensorFlow,那么我们就不再面临任何悬而未决的问题,因为Julia的内存管理要好得多。
更一般而言,深度学习模型的许多缓慢现象是由内存I/O引起的。不管我们是做对象检测还是关键点注释,以及想要实时显示,这些几乎都没问题。只需考虑在视频流上运行的任何内容。与加快应用于此的深度学习模型速度相比,克服内存I/O问题要付出更多的努力(这是我的部分日常工作)。
那么,深度学习框架发展会走向何方呢?自动区分仍然是一个巨大的问题,尤其是对于真正罕见的功能。使用Swift进行TensorFlow实验,PyTorch?谁知道呢,他们要往哪里前进。
我不是C++的忠实拥护者(我更喜欢C而不是C++),因为它容易出错,可能导致安全问题。即使人们可能传输了所有的编码采访而构建了有缺陷的C++软件(是的,我强烈反对编码采访),人们还是应该正确地学习它,反复强调是无济于事的。
在HPC(高性能计算)中,许多软件已经或者正从FORTRAN迁移到C++,我不明白。因为将经过良好测试的FORTRAN代码迁移到(未经测试的)C++对我来说没有任何意义。改变一种编程语言到另一种极其相似的语言,为什么多此一举?我仍然认为,从长远来看,Rust(适用于系统级和GUI的所有产品)和Julia(适用于机器学习)的组合将获得成功。
目前正在使用的是什么?好吧,我已经从TensorFlow/Keras切换到以PyTorch为主,因为我需要太多的自定义/非标准功能。但这并不意味着我不再使用TensorFlow/Keras。在2020年,我希望朝着仅使用Julia框架迈进。
上述内容就是PyTorch1.3和TensorFlow 2.0的示例分析,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注行业资讯频道。