Master上的Spark怎么安装
这篇文章主要讲解了"Master上的Spark怎么安装",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Master上的Spark怎么安装"吧!
安装Spark
Master、Slave1、Slave2这三台机器上均需要安装Spark。
首先在Master上安装Spark,具体步骤如下:
第一步:把Master上的Spark解压:
我们直接解压到当前目录下:
此时,我们创建Spark的目录"/usr/local/spark":
把解压后的"spark-1.0.0-bin-hadoop1"复制到/usr/local/spark"下面:
第二步:配置环境变量
进入配置文件:
在配置文件中加入"SPARK_HOME"并把spark的bin目录加到PATH中:
配置后保存退出,然后使配置生效:
第三步:配置Spark
进入Spark的conf目录:
在配置文件中加入"SPARK_HOME"并把spark的bin目录加到PATH中:
把spark-env.sh.template 拷贝到spark-env.sh:
在配置文件中添加如下配置信息:
其中:
JAVA_HOME:指定的是Java的安装目录;
SCALA_HOME:指定的是Scala的安装目录;
SPARK_MASTER_IP:指定的是Spark集群的Master节点的IP地址;
SPARK_WORKER_MEMOERY:指定的Worker节点能够最大分配给Excutors的内存大小,因为我们的三台机器配置都是2g,为了最充分的使用内存,这里设置为了2g;
HADOOP_CONF_DIR:指定的是我们原来的Hadoop集群的配置文件的目录;
保存退出。
接下来配置Spark的conf下的slaves文件,把Worker节点都添加进去:
打开后文件的内容:
我们需要把内容修改为:
可以看出我们把三台机器都设置为了Worker节点,也就是我们的主节点即是Master又是Worker节点。
保存退出。
感谢各位的阅读,以上就是"Master上的Spark怎么安装"的内容了,经过本文的学习后,相信大家对Master上的Spark怎么安装这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!