pytorch中网络和损失函数可视化的示例分析
发表于:2025-02-19 作者:千家信息网编辑
千家信息网最后更新 2025年02月19日,小编给大家分享一下pytorch中网络和损失函数可视化的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1.效果2.
千家信息网最后更新 2025年02月19日pytorch中网络和损失函数可视化的示例分析
小编给大家分享一下pytorch中网络和损失函数可视化的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
1.效果
2.环境
1.pytorch
2.visdom
3.python3.5
3.用到的代码
# coding:utf8import torchfrom torch import nn, optim # nn 神经网络模块 optim优化函数模块from torch.utils.data import DataLoaderfrom torch.autograd import Variablefrom torchvision import transforms, datasetsfrom visdom import Visdom # 可视化处理模块import timeimport numpy as np# 可视化appviz = Visdom()# 超参数BATCH_SIZE = 40LR = 1e-3EPOCH = 2# 判断是否使用gpuUSE_GPU = Trueif USE_GPU: gpu_status = torch.cuda.is_available()else: gpu_status = Falsetransform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])# 数据引入train_dataset = datasets.MNIST('../data', True, transform, download=False)test_dataset = datasets.MNIST('../data', False, transform)train_loader = DataLoader(train_dataset, BATCH_SIZE, True)# 为加快测试,把测试数据从10000缩小到2000test_data = torch.unsqueeze(test_dataset.test_data, 1)[:1500]test_label = test_dataset.test_labels[:1500]# visdom可视化部分数据viz.images(test_data[:100], nrow=10)#viz.images(test_data[:100], nrow=10)# 为防止可视化视窗重叠现象,停顿0.5秒time.sleep(0.5)if gpu_status: test_data = test_data.cuda()test_data = Variable(test_data, volatile=True).float()# 创建线图可视化窗口line = viz.line(np.arange(10))# 创建cnn神经网络class CNN(nn.Module): def __init__(self, in_dim, n_class): super(CNN, self).__init__() self.conv = nn.Sequential( # channel 为信息高度 padding为图片留白 kernel_size 扫描模块size(5x5) nn.Conv2d(in_channels=in_dim, out_channels=16,kernel_size=5,stride=1, padding=2), nn.ReLU(), # 平面缩减 28x28 >> 14*14 nn.MaxPool2d(kernel_size=2), nn.Conv2d(16, 32, 3, 1, 1), nn.ReLU(), # 14x14 >> 7x7 nn.MaxPool2d(2) ) self.fc = nn.Sequential( nn.Linear(32*7*7, 120), nn.Linear(120, n_class) ) def forward(self, x): out = self.conv(x) out = out.view(out.size(0), -1) out = self.fc(out) return outnet = CNN(1,10)if gpu_status : net = net.cuda() #print("#"*26, "使用gpu", "#"*26)else: #print("#" * 26, "使用cpu", "#" * 26) pass# loss、optimizer 函数设置loss_f = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=LR)# 起始时间设置start_time = time.time()# 可视化所需数据点time_p, tr_acc, ts_acc, loss_p = [], [], [], []# 创建可视化数据视窗text = viz.text("convolution Nueral Network
")for epoch in range(EPOCH): # 由于分批次学习,输出loss为一批平均,需要累积or平均每个batch的loss,acc sum_loss, sum_acc, sum_step = 0., 0., 0. for i, (tx, ty) in enumerate(train_loader, 1): if gpu_status: tx, ty = tx.cuda(), ty.cuda() tx = Variable(tx) ty = Variable(ty) out = net(tx) loss = loss_f(out, ty) #print(tx.size()) #print(ty.size()) #print(out.size()) sum_loss += loss.item()*len(ty) #print(sum_loss) pred_tr = torch.max(out,1)[1] sum_acc += sum(pred_tr==ty).item() sum_step += ty.size(0) # 学习反馈 optimizer.zero_grad() loss.backward() optimizer.step() # 每40个batch可视化一下数据 if i % 40 == 0: if gpu_status: test_data = test_data.cuda() test_out = net(test_data) print(test_out.size()) # 如果用gpu运行out数据为cuda格式需要.cpu()转化为cpu数据 在进行比较 pred_ts = torch.max(test_out, 1)[1].cpu().data.squeeze() print(pred_ts.size()) rightnum = pred_ts.eq(test_label.view_as(pred_ts)).sum().item() #rightnum =sum(pred_tr==ty).item() # sum_acc += sum(pred_tr==ty).item() acc = rightnum/float(test_label.size(0)) print("epoch: [{}/{}] | Loss: {:.4f} | TR_acc: {:.4f} | TS_acc: {:.4f} | Time: {:.1f}".format(epoch+1, EPOCH, sum_loss/(sum_step), sum_acc/(sum_step), acc, time.time()-start_time)) # 可视化部分 time_p.append(time.time()-start_time) tr_acc.append(sum_acc/sum_step) ts_acc.append(acc) loss_p.append(sum_loss/sum_step) viz.line(X=np.column_stack((np.array(time_p), np.array(time_p), np.array(time_p))), Y=np.column_stack((np.array(loss_p), np.array(tr_acc), np.array(ts_acc))), win=line, opts=dict(legend=["Loss", "TRAIN_acc", "TEST_acc"])) # visdom text 支持html语句 viz.text("epoch:{}
Loss:{:.4f}
" "TRAIN_acc:{:.4f}
TEST_acc:{:.4f}
" "Time:{:.2f}
".format(epoch, sum_loss/sum_step, sum_acc/sum_step, acc, time.time()-start_time), win=text) sum_loss, sum_acc, sum_step = 0., 0., 0.
以上是"pytorch中网络和损失函数可视化的示例分析"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!
可视化
数据
函数
网络
模块
篇文章
学习
损失
示例
分析
内容
神经
神经网络
视窗
部分
测试
不怎么
代码
信息
参数
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
网络安全培训大纲
信息化网络安全工程资质
网络安全教案初一
网络安全法违反第27条的处罚
y数据库与刑事侦查
石家庄市纵横网络技术
湖北电商软件开发哪家正规
网络安全给军事造成的影响
万国觉醒开新服务器
通讯与网络技术总结
我国在数据库软件方面的研究
神武4怎么更换服务器
教育资源投入数据库
网络安全宣传日活动视频
湖州企业软件开发流程
郑州网络安全直播
网络安全班会学校新闻稿
中国各行业网络安全市场占比
云服务器提示密码无法登录
管理服务器任务
重启.net服务器
阿里云底层是什么数据库系统
软件开发需要交印花税吗
明年网络安全法律法规
贷款公司买数据库
职商网络技术是什么
如何远程登录家庭服务器
暗黑3 服务器选择
学软件开发是吃青春饭
新建服务器url