Python怎么实现图像分割
发表于:2024-12-12 作者:千家信息网编辑
千家信息网最后更新 2024年12月12日,本篇内容介绍了"Python怎么实现图像分割"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!方法一im
千家信息网最后更新 2024年12月12日Python怎么实现图像分割
本篇内容介绍了"Python怎么实现图像分割"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
方法一
import randomimport numpy as npfrom PIL import Image, ImageOps, ImageFilterfrom skimage.filters import gaussianimport torchimport mathimport numbersimport randomclass RandomVerticalFlip(object): def __call__(self, img): if random.random() < 0.5: return img.transpose(Image.FLIP_TOP_BOTTOM) return imgclass DeNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensorclass MaskToTensor(object): def __call__(self, img): return torch.from_numpy(np.array(img, dtype=np.int32)).long()class FreeScale(object): def __init__(self, size, interpolation=Image.BILINEAR): self.size = tuple(reversed(size)) # size: (h, w) self.interpolation = interpolation def __call__(self, img): return img.resize(self.size, self.interpolation)class FlipChannels(object): def __call__(self, img): img = np.array(img)[:, :, ::-1] return Image.fromarray(img.astype(np.uint8))class RandomGaussianBlur(object): def __call__(self, img): sigma = 0.15 + random.random() * 1.15 blurred_img = gaussian(np.array(img), sigma=sigma, multichannel=True) blurred_img *= 255 return Image.fromarray(blurred_img.astype(np.uint8))# 组合class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, img, mask): assert img.size == mask.size for t in self.transforms: img, mask = t(img, mask) return img, mask# 随机裁剪class RandomCrop(object): def __init__(self, size, padding=0): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size self.padding = padding def __call__(self, img, mask): if self.padding > 0: img = ImageOps.expand(img, border=self.padding, fill=0) mask = ImageOps.expand(mask, border=self.padding, fill=0) assert img.size == mask.size w, h = img.size th, tw = self.size if w == tw and h == th: return img, mask if w < tw or h < th: return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST) x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))# 中心裁剪class CenterCrop(object): def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, img, mask): assert img.size == mask.size w, h = img.size th, tw = self.size x1 = int(round((w - tw) / 2.)) y1 = int(round((h - th) / 2.)) return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))class RandomHorizontallyFlip(object): def __call__(self, img, mask): if random.random() < 0.5: return img.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(Image.FLIP_LEFT_RIGHT) return img, maskclass Scale(object): def __init__(self, size): self.size = size def __call__(self, img, mask): assert img.size == mask.size w, h = img.size if (w >= h and w == self.size) or (h >= w and h == self.size): return img, mask if w > h: ow = self.size oh = int(self.size * h / w) return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST) else: oh = self.size ow = int(self.size * w / h) return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)class RandomSizedCrop(object): def __init__(self, size): self.size = size def __call__(self, img, mask): assert img.size == mask.size for attempt in range(10): area = img.size[0] * img.size[1] target_area = random.uniform(0.45, 1.0) * area aspect_ratio = random.uniform(0.5, 2) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img.size[0] and h <= img.size[1]: x1 = random.randint(0, img.size[0] - w) y1 = random.randint(0, img.size[1] - h) img = img.crop((x1, y1, x1 + w, y1 + h)) mask = mask.crop((x1, y1, x1 + w, y1 + h)) assert (img.size == (w, h)) return img.resize((self.size, self.size), Image.BILINEAR), mask.resize((self.size, self.size), Image.NEAREST) # Fallback scale = Scale(self.size) crop = CenterCrop(self.size) return crop(*scale(img, mask))class RandomRotate(object): def __init__(self, degree): self.degree = degree def __call__(self, img, mask): rotate_degree = random.random() * 2 * self.degree - self.degree return img.rotate(rotate_degree, Image.BILINEAR), mask.rotate(rotate_degree, Image.NEAREST)class RandomSized(object): def __init__(self, size): self.size = size self.scale = Scale(self.size) self.crop = RandomCrop(self.size) def __call__(self, img, mask): assert img.size == mask.size w = int(random.uniform(0.5, 2) * img.size[0]) h = int(random.uniform(0.5, 2) * img.size[1]) img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST) return self.crop(*self.scale(img, mask))class SlidingCropOld(object): def __init__(self, crop_size, stride_rate, ignore_label): self.crop_size = crop_size self.stride_rate = stride_rate self.ignore_label = ignore_label def _pad(self, img, mask): h, w = img.shape[: 2] pad_h = max(self.crop_size - h, 0) pad_w = max(self.crop_size - w, 0) img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant') mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label) return img, mask def __call__(self, img, mask): assert img.size == mask.size w, h = img.size long_size = max(h, w) img = np.array(img) mask = np.array(mask) if long_size > self.crop_size: stride = int(math.ceil(self.crop_size * self.stride_rate)) h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1 w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1 img_sublist, mask_sublist = [], [] for yy in range(h_step_num): for xx in range(w_step_num): sy, sx = yy * stride, xx * stride ey, ex = sy + self.crop_size, sx + self.crop_size img_sub = img[sy: ey, sx: ex, :] mask_sub = mask[sy: ey, sx: ex] img_sub, mask_sub = self._pad(img_sub, mask_sub) img_sublist.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB')) mask_sublist.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P')) return img_sublist, mask_sublist else: img, mask = self._pad(img, mask) img = Image.fromarray(img.astype(np.uint8)).convert('RGB') mask = Image.fromarray(mask.astype(np.uint8)).convert('P') return img, maskclass SlidingCrop(object): def __init__(self, crop_size, stride_rate, ignore_label): self.crop_size = crop_size self.stride_rate = stride_rate self.ignore_label = ignore_label def _pad(self, img, mask): h, w = img.shape[: 2] pad_h = max(self.crop_size - h, 0) pad_w = max(self.crop_size - w, 0) img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant') mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label) return img, mask, h, w def __call__(self, img, mask): assert img.size == mask.size w, h = img.size long_size = max(h, w) img = np.array(img) mask = np.array(mask) if long_size > self.crop_size: stride = int(math.ceil(self.crop_size * self.stride_rate)) h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1 w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1 img_slices, mask_slices, slices_info = [], [], [] for yy in range(h_step_num): for xx in range(w_step_num): sy, sx = yy * stride, xx * stride ey, ex = sy + self.crop_size, sx + self.crop_size img_sub = img[sy: ey, sx: ex, :] mask_sub = mask[sy: ey, sx: ex] img_sub, mask_sub, sub_h, sub_w = self._pad(img_sub, mask_sub) img_slices.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB')) mask_slices.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P')) slices_info.append([sy, ey, sx, ex, sub_h, sub_w]) return img_slices, mask_slices, slices_info else: img, mask, sub_h, sub_w = self._pad(img, mask) img = Image.fromarray(img.astype(np.uint8)).convert('RGB') mask = Image.fromarray(mask.astype(np.uint8)).convert('P') return [img], [mask], [[0, sub_h, 0, sub_w, sub_h, sub_w]]
方法二
import numpy as npimport randomimport torchfrom torchvision import transforms as Tfrom torchvision.transforms import functional as Fdef pad_if_smaller(img, size, fill=0): # 如果图像最小边长小于给定size,则用数值fill进行padding min_size = min(img.size) if min_size < size: ow, oh = img.size padh = size - oh if oh < size else 0 padw = size - ow if ow < size else 0 img = F.pad(img, (0, 0, padw, padh), fill=fill) return imgclass Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, targetclass RandomResize(object): def __init__(self, min_size, max_size=None): self.min_size = min_size if max_size is None: max_size = min_size self.max_size = max_size def __call__(self, image, target): size = random.randint(self.min_size, self.max_size) # 这里size传入的是int类型,所以是将图像的最小边长缩放到size大小 image = F.resize(image, size) # 这里的interpolation注意下,在torchvision(0.9.0)以后才有InterpolationMode.NEAREST # 如果是之前的版本需要使用PIL.Image.NEAREST target = F.resize(target, size, interpolation=T.InterpolationMode.NEAREST) return image, targetclass RandomHorizontalFlip(object): def __init__(self, flip_prob): self.flip_prob = flip_prob def __call__(self, image, target): if random.random() < self.flip_prob: image = F.hflip(image) target = F.hflip(target) return image, targetclass RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, image, target): image = pad_if_smaller(image, self.size) target = pad_if_smaller(target, self.size, fill=255) crop_params = T.RandomCrop.get_params(image, (self.size, self.size)) image = F.crop(image, *crop_params) target = F.crop(target, *crop_params) return image, targetclass CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, image, target): image = F.center_crop(image, self.size) target = F.center_crop(target, self.size) return image, targetclass ToTensor(object): def __call__(self, image, target): image = F.to_tensor(image) target = torch.as_tensor(np.array(target), dtype=torch.int64) return image, targetclass Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target): image = F.normalize(image, mean=self.mean, std=self.std) return image, target
"Python怎么实现图像分割"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!
图像
最小
内容
方法
更多
知识
边长
实用
学有所成
接下来
困境
大小
实际
情况
数值
文章
案例
版本
类型
编带
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
数据库时间字段
湘潭哪里有软件开发公司
公司内部共享存储服务器
云上生活网络安全
公共信息网络安全监察工的性质
如何自律软件开发
数据库设计基础考点
公司接外网过服务器吗
数据库主键分布式ID
产品的软件开发技术
客服软件开发公司
录播服务器怎么选
学校服务器安全
王者荣耀怎么换服务器
泉州市网络安全和信息办公室
如何降低服务器排名
乡镇网络安全主要工作
公安部网络安全李力
电话手表服务器返回异常
全量数据和增量数据库
泰兴自动化网络技术市场
用互联网科技助推广大人民群众
天盈九州网络技术 ceo
数据库劣势存储和优势
学软件开发需要看什么
数据库关联字段用字符串还是数字
河北数据软件开发价格参考价格
因菲尼特软件开发公司
软件开发课程海报创意
一个程序需要多个数据库