千家信息网

docker19.03如何使用NVIDIA显卡

发表于:2024-12-03 作者:千家信息网编辑
千家信息网最后更新 2024年12月03日,这篇文章给大家分享的是有关docker19.03如何使用NVIDIA显卡的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。docker19.03使用NVIDIA显卡前言2019
千家信息网最后更新 2024年12月03日docker19.03如何使用NVIDIA显卡

这篇文章给大家分享的是有关docker19.03如何使用NVIDIA显卡的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

docker19.03使用NVIDIA显卡

前言

2019年7月的docker 19.03已经正式发布了,这次发布对我来说有两大亮点。
1,就是docker不需要root权限来启动喝运行了
2,就是支持GPU的增强功能,我们在docker里面想读取nvidia显卡再也不需要额外的安装nvidia-docker

安装nvidia驱动

确认已检测到NVIDIA卡:

$ lspci -vv | grep -i nvidia00:04.0 3D controller: NVIDIA Corporation GP100GL [Tesla P100 PCIe 16GB] (rev a1)        Subsystem: NVIDIA Corporation GP100GL [Tesla P100 PCIe 16GB]        Kernel modules: nvidiafb

这里不再详细介绍:如果不知道请移步ubuntu离线安装TTS服务

安装NVIDIA Container Runtime

$ cat nvidia-container-runtime-script.shcurl -s -L https://nvidia.github.io/nvidia-container-runtime/gpgkey | \  sudo apt-key add -distribution=$(. /etc/os-release;echo $ID$VERSION_ID)curl -s -L https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-container-runtime.list | \  sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.listsudo apt-get update

执行脚本

sh nvidia-container-runtime-script.sh
OKdeb https://nvidia.github.io/libnvidia-container/ubuntu18.04/$(ARCH) /deb https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/$(ARCH) /Hit:1 http://archive.canonical.com/ubuntu bionic InReleaseGet:2 https://nvidia.github.io/libnvidia-container/ubuntu18.04/amd64  InRelease [1139 B]                Get:3 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64  InRelease [1136 B]           Hit:4 http://security.ubuntu.com/ubuntu bionic-security InRelease                                       Get:5 https://nvidia.github.io/libnvidia-container/ubuntu18.04/amd64  Packages [4076 B]                 Get:6 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64  Packages [3084 B]            Hit:7 http://us-east4-c.gce.clouds.archive.ubuntu.com/ubuntu bionic InReleaseHit:8 http://us-east4-c.gce.clouds.archive.ubuntu.com/ubuntu bionic-updates InReleaseHit:9 http://us-east4-c.gce.clouds.archive.ubuntu.com/ubuntu bionic-backports InReleaseFetched 9435 B in 1s (17.8 kB/s)                   Reading package lists... Done
$ apt-get install nvidia-container-runtimeReading package lists... DoneBuilding dependency tree       Reading state information... DoneThe following packages were automatically installed and are no longer required:  grub-pc-bin libnuma1Use 'sudo apt autoremove' to remove them.The following additional packages will be installed:Get:1 https://nvidia.github.io/libnvidia-container/ubuntu18.04/amd64  libnvidia-container1 1.0.2-1 [59.1 kB]Get:2 https://nvidia.github.io/libnvidia-container/ubuntu18.04/amd64  libnvidia-container-tools 1.0.2-1 [15.4 kB]Get:3 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64  nvidia-container-runtime-hook 1.4.0-1 [575 kB]...Unpacking nvidia-container-runtime (2.0.0+docker18.09.6-3) ...Setting up libnvidia-container1:amd64 (1.0.2-1) ...Setting up libnvidia-container-tools (1.0.2-1) ...Processing triggers for libc-bin (2.27-3ubuntu1) ...Setting up nvidia-container-runtime-hook (1.4.0-1) ...Setting up nvidia-container-runtime (2.0.0+docker18.09.6-3) ...
which nvidia-container-runtime-hook/usr/bin/nvidia-container-runtime-hook

安装docker-19.03

# step 1: 安装必要的一些系统工具yum install -y yum-utils device-mapper-persistent-data lvm2# Step 2: 添加软件源信息yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo# Step 3: 更新并安装 Docker-CEyum makecache fastyum -y install docker-ce-19.03.2# Step 4: 开启Docker服务systemctl start docker && systemctl enable docker

验证docker版本是否安装正常

$ docker versionClient: Docker Engine - Community Version:           19.03.2 API version:       1.40 Go version:        go1.12.8 Git commit:        6a30dfc Built:             Thu Aug 29 05:28:55 2019 OS/Arch:           linux/amd64 Experimental:      falseServer: Docker Engine - Community Engine:  Version:          19.03.2  API version:      1.40 (minimum version 1.12)  Go version:       go1.12.8  Git commit:       6a30dfc  Built:            Thu Aug 29 05:27:34 2019  OS/Arch:          linux/amd64  Experimental:     false containerd:  Version:          1.2.6  GitCommit:        894b81a4b802e4eb2a91d1ce216b8817763c29fb runc:  Version:          1.0.0-rc8  GitCommit:        425e105d5a03fabd737a126ad93d62a9eeede87f docker-init:  Version:          0.18.0  GitCommit:        fec3683

验证下-gpus选项

$ docker run --help | grep -i gpus      --gpus gpu-request               GPU devices to add to the container ('all' to pass all GPUs)

运行利用GPU的Ubuntu容器

 $ docker run -it --rm --gpus all ubuntu nvidia-smiUnable to find image 'ubuntu:latest' locallylatest: Pulling from library/ubuntuf476d66f5408: Pull complete 8882c27f669e: Pull complete d9af21273955: Pull complete f5029279ec12: Pull complete Digest: sha256:d26d529daa4d8567167181d9d569f2a85da3c5ecaf539cace2c6223355d69981Status: Downloaded newer image for ubuntu:latestTue May  7 15:52:15 2019       +-----------------------------------------------------------------------------+| NVIDIA-SMI 390.116                Driver Version: 390.116                   ||-------------------------------+----------------------+----------------------+| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC || Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. ||===============================+======================+======================||   0  Tesla P4            Off  | 00000000:00:04.0 Off |                    0 || N/A   39C    P0    22W /  75W |      0MiB /  7611MiB |      0%      Default |+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+| Processes:                                                       GPU Memory ||  GPU       PID   Type   Process name                             Usage      ||=============================================================================||  No running processes found                                                 |+-----------------------------------------------------------------------------+:~$

故障排除

您是否遇到以下错误消息:

$ docker run -it --rm --gpus all debiandocker: Error response from daemon: linux runtime spec devices: could not select device driver "" with capabilities: [[gpu]].

上述错误意味着Nvidia无法正确注册Docker。它实际上意味着驱动程序未正确安装在主机上。这也可能意味着安装了nvidia容器工具而无需重新启动docker守护程序:您需要重新启动docker守护程序。

我建议你回去验证是否安装了nvidia-container-runtime或者重新启动Docker守护进程。

列出GPU设备

$ docker run -it --rm --gpus all ubuntu nvidia-smi -LGPU 0: Tesla P4 (UUID: GPU-fa974b1d-3c17-ed92-28d0-805c6d089601)
$ docker run -it --rm --gpus all ubuntu nvidia-smi  --query-gpu=index,name,uuid,serial --format=csvindex, name, uuid, serial0, Tesla P4, GPU-fa974b1d-3c17-ed92-28d0-805c6d089601, 0325017070224

待验证,因为我现在没有GPU机器---已经验证完成,按照上述操作可以在docker里面成功的驱动nvidia显卡

感谢各位的阅读!关于"docker19.03如何使用NVIDIA显卡"这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

0