千家信息网

如何使用keras做SQL注入攻击判断

发表于:2024-11-30 作者:千家信息网编辑
千家信息网最后更新 2024年11月30日,小编给大家分享一下如何使用keras做SQL注入攻击判断,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!通过深度学习框架ke
千家信息网最后更新 2024年11月30日如何使用keras做SQL注入攻击判断

小编给大家分享一下如何使用keras做SQL注入攻击判断,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

通过深度学习框架keras来做SQL注入特征识别, 不过虽然用了keras,但是大部分还是普通的神经网络,只是外加了一些规则化、dropout层(随着深度学习出现的层)。

基本思路就是喂入一堆数据(INT型)、通过神经网络计算(正向、反向)、SOFTMAX多分类概率计算得出各个类的概率,注意:这里只要2个类别:0-正常的文本;1-包含SQL注入的文本

文件分割上,做成了4个python文件:

util类,用来将char转换成int(NN要的都是数字类型的,其他任何类型都要转换成int/float这些才能喂入,又称为feed)

data类,用来获取训练数据,验证数据的类,由于这里的训练是有监督训练,因此此时需要返回的是个元组(x, y)

trainer类,keras的网络模型建模在这里,包括损失函数、训练epoch次数等

predict类,获取几个测试数据,看看效果的预测类

先放trainer类代码,网络定义在这里,最重要的一个,和数据格式一样重要(呵呵,数据格式可是非常重要的,在这种程序中)

import SQL注入Dataimport numpy as npimport kerasfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, Activationfrom keras.layers.normalization import BatchNormalizationfrom keras.optimizers import SGD x, y=SQL注入Data.loadSQLInjectData()availableVectorSize=15x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)y=keras.utils.to_categorical(y, num_classes=2)  model = Sequential()model.add(Dense(64, activation='relu', input_dim=availableVectorSize))model.add(BatchNormalization())model.add(Dropout(0.3))model.add(Dense(64, activation='relu'))model.add(Dropout(0.3))model.add(Dense(2, activation='softmax')) sgd = SGD(lr=0.001, momentum=0.9)model.compile(loss='mse',  optimizer=sgd,  metrics=['accuracy']) history=model.fit(x, y,epochs=500,batch_size=16) model.save('E:\\sql_checker\\models\\trained_models.h6')print("DONE, model saved in path-->E:\\sql_checker\\models\\trained_models.h6") import matplotlib.pyplot as pltplt.plot(history.history['loss'])plt.title('model loss')plt.ylabel('loss')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()

先来解释上面这段plt的代码,因为最容易解释,这段代码是用来把每次epoch的训练的损失loss value用折线图表示出来:

  

何为训练?何为损失loss value?

训练的目的是为了想让网络最终计算出来的分类数据和我们给出的y一致,那不一致怎么算?不一致就是有损失,也就是说训练的目的是要一致,也就是要损失最小化

怎么让损失最小化?梯度下降,这里用的是SGD优化算法:

from keras.optimizers import SGD sgd = SGD(lr=0.001, momentum=0.9)model.compile(loss='mse',  optimizer=sgd,  metrics=['accuracy'])

上面这段代码的loss='mse'就是定义了用那种损失函数,还有好几种损失函数,大家自己参考啊。

optimizer=sgd就是优化算法用哪个了,不同的optimizer有不同的参数

由于此处用的是全连接NN,因此是需要固定的输入size的,这个函数就是用来固定(不够会补0) 特征向量size的:

x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)

再来看看最终的分类输出,是one hot的,这个one hot大家自己查查,很容易的定义,就是比较浪费空间,分类间没有关联性,不过用在这里很方便

y=keras.utils.to_categorical(y, num_classes=2)

然后再说说预测部分代码:

import SQL注入Dataimport Converter  import numpy as npimport kerasfrom keras.models import load_model print("predict....") x=SQL注入Data.loadTestSQLInjectData()x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=15) model=load_model('E:\\sql_checker\\models\\trained_models.h6')result=model.predict_classes(x, batch_size=len(x))result=Converter.convert2label(result)print(result)  print("DONE")

这部分代码很容易理解,并且连y都没有  

  

好了,似乎有那么点意思了吧。

下面把另外几个工具类、数据类代码放出来:

def toints(sentence): base=ord('0') ary=[] for c in sentence:  ary.append(ord(c)-base) return ary  def convert2label(vector): string_array=[] for v in vector:  if v==1:   string_array.append('SQL注入')  else:   string_array.append('正常文本') return string_array
import Converterimport numpy as np def loadSQLInjectData(): x=[] x.append(Converter.toints("100")) x.append(Converter.toints("150")) x.append(Converter.toints("1")) x.append(Converter.toints("3")) x.append(Converter.toints("19")) x.append(Converter.toints("37")) x.append(Converter.toints("1'--")) x.append(Converter.toints("1' or 1=1;--")) x.append(Converter.toints("updatable")) x.append(Converter.toints("update tbl")) x.append(Converter.toints("update someb")) x.append(Converter.toints("update")) x.append(Converter.toints("updat")) x.append(Converter.toints("update a")) x.append(Converter.toints("'--")) x.append(Converter.toints("' or 1=1;--")) x.append(Converter.toints("aupdatable")) x.append(Converter.toints("hello world"))  y=[[0],[0],[0],[0],[0],[0],[1],[1],[0],[1],[1],[0],[0],[1],[1],[1],[0],[0]]  x=np.asarray(x) y=np.asarray(y)  return x, y  def loadTestSQLInjectData():  x=[] x.append(Converter.toints("some value")) x.append(Converter.toints("-1")) x.append(Converter.toints("' or 1=1;--")) x.append(Converter.toints("noupdate")) x.append(Converter.toints("update ")) x.append(Converter.toints("update")) x.append(Converter.toints("update z")) x=np.asarray(x) return x

以上是"如何使用keras做SQL注入攻击判断"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!

损失 数据 训练 代码 就是 网络 一致 函数 分类 重要 文本 篇文章 学习 攻击 不同 最小 也就是 内容 大部分 文件 数据库的安全要保护哪些东西 数据库安全各自的含义是什么 生产安全数据库录入 数据库的安全性及管理 数据库安全策略包含哪些 海淀数据库安全审计系统 建立农村房屋安全信息数据库 易用的数据库客户端支持安全管理 连接数据库失败ssl安全错误 数据库的锁怎样保障安全 数据库表达什么意思 数据库原理基本查询习题 电脑怎样当服务器 it软件开发英语不好能学吗 网络安全人员培训心得体会 高中生网络技术考试试题 数据库基金 不能将网页上传到服务器的软件是 巅峰战舰连不上服务器怎么回事 两百人规模的公司有多少服务器 德州有没有网络安全国企 PCS7客户机服务器教程 国行ps4无法连接的服务器 服务器销售公司 lol电脑服务器爆满怎么办 打印软件无法连接数据库 网络技术兼职的软件 深圳达讯星网络技术 迁移svn服务器 安徽智趣网络技术有限公司 报表开发属于软件开发吗 网络安全最大威胁 伯明翰大学网络安全专业 网络安全的手抄报初一8K 学生信息数据库设计实训报告 gb t 计算机网络技术 工控网络技术一般几年级学 陕西省教育网络安全和信息化工作 数据库优化查询先做什么操作 软件开发前景及发展趋势
0