基于Spring Boot的线程池监控问题如何解决
这篇文章主要介绍"基于Spring Boot的线程池监控问题如何解决",在日常操作中,相信很多人在基于Spring Boot的线程池监控问题如何解决问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"基于Spring Boot的线程池监控问题如何解决"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
为什么需要对线程池进行监控
Java线程池作为最常使用到的并发工具,相信大家都不陌生,但是你真的确定使用对了吗?大名鼎鼎的阿里Java代码规范要求我们不使用 Executors来快速创建线程池,但是抛弃Executors,使用其它方式创建线程池就一定不会出现问题吗?本质上对于我们来说线程池本身的运行过程是一个黑盒,我们没办法了解线程池中的运行状态时,出现问题没有办法及时判断和预警。面对这种黑盒操作必须通过监控方式让其透明化,这样对我们来说才能更好的使用好线程池。因此必须对线程池做监控。
如何做线程池的监控
对于如何做监控,本质就是涉及三点,分别是数据采集、数据存储以及大盘的展示,接下来我们分说下这三点;
数据采集
采集什么数据,对于我们来说需要采集就是黑盒的数据,什么又是线程池的黑盒数据,其实也就是整个线程处理的整个流程,在整个流程中,我们可以通过ThreadPoolExecutor中的七个方法获取数据,通过这七个方法采集到的数据就可以使线程池的执行过程透明化。
getCorePoolSize():获取核心线程数;
getMaximumPoolSize:获取最大线程数;
getQueue():获取线程池中的阻塞队列,并通过阻塞队列中的方法获取队列长度、元素个数等;
getPoolSize():获取线程池中的工作线程数(包括核心线程和非核心线程);
getActiveCount():获取活跃线程数,也就是正在执行任务的线程;
getLargestPoolSize():获取线程池曾经到过的最大工作线程数;
getTaskCount():获取历史已完成以及正在执行的总的任务数量;
除了我们了解的这些流程以外,ThreadPoolExecutor中还提供了三种钩子函数,
beforeExecute():Worker线程执行任务之前会调用的方法;
afterExecute():在Worker线程执行任务之后会调用的方法;
terminated():当线程池从运行状态变更到TERMINATED状态之前调用的方法;
对于beforeExecute和afterExecute可以理解为使用Aop监听线程执行的时间,这样子我们可以对每个线程运行的时间整体做监控,terminated可以理解为线程关闭时候的监控,这样我们就可以整体获取采集到线程池生命周期的所有数据了。
数据存储以及大盘的展示
对于存储我们这个比较适合采用时序性数据库,此外现在很多成熟的监控产品都可以满足我们大屏展示的诉求,这里推荐下美团Cat和Prometheus,这里不展开进行讲解,大家可以根据自己公司的监控产品进行选择,对于不同的方案采取的存储形式会有些差异,甚至自己都可以自定义实现一个功能,反正难度不大。
进一步扩展以及思考
在实际的项目开发中我们会遇到以下场景:
不同的业务采用同一个线程池,这样如果某个服务阻塞,会影响到整体共用线程池的所有服务,会触发线程池的拒绝策略;
流量突然增加,需要动态调整线程池的参数,这个时候又不能重启;
针对这两种场景,我们对线程池再次进行了深入的思考:
如何合理配置线程池参数;
如何动态调整线程池参数;
如何给不同的服务之间做线程池的隔离;
如何合理配置线程池参数
关于这个问题面试的时候也是经常被问到,我只能说这个问题开始就是一个坑,针对与CPU密集型和I/O密集型,线程池的参数是有不同设计的,也不是遵守几个公式就可以搞定,当然可以参考,我认为对于线程池合理的参数的配置是经过多次调整得到的,甚至增加和减少业务都会影响一些参数,我不太建议大家每天背书式的CPU密集型就是N+1,非CPU密集型就是2N,因此我们更希望看到线程池动态配置。
如何动态调整线程池参数
关于如何动态调整线程池,还是回到我们场景问题的解决上,对于流量突增核心就是提升线程池的处理速度,那如何提升线程池的处理速度,有两种方式,一种是加快业务的处理,也就是消费的快,显然这种在运行的业务中我们想改变还是比较困难,这个可以作为复盘的重点;还有一种就是增加消费者,增加消费者的重点就是调整核心线程数以及非核心线程数的数量。
居于这种思考,这个时候我们需要看下ThreadPoolExecutor线程池源码,首先看下开始定义的变量,通过变量的设计我们就会发现大师就是大师,大师通过AtomicInteger修饰的ctl变量,高3位存储了线程池的状态,低29存储线程的个数,通过一个变量完成两件事情,完成状态判断以及限制线程最大个数。使用一个HashSet存储Worker的引用,而Worker继承了AbstractQueuedSynchronizer,实现一个一个不可冲入的独占锁保证线程的安全性。
//用来标记线程池状态(高3位),线程个数(低29位) private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));//工作状态存储在高3位中private static final int COUNT_BITS = Integer.SIZE - 3;//线程个数所能表达的最大数值private static final int CAPACITY = (1 << COUNT_BITS) - 1;//线程池状态//RUNNING -1 能够接收新任务,也可以处理阻塞队列中的任务private static final int RUNNING = -1 << COUNT_BITS;//SHUTDOWN 0 不可以接受新任务,继续处理阻塞队列中的任务private static final int SHUTDOWN = 0 << COUNT_BITS;//STOP 1 不接收新任务,不处理阻塞队列中的任务,并且会中断正在处理的任务private static final int STOP = 1 << COUNT_BITS;//TIDYING 2 所有任务已经中止,且工作线程数量为0,最后变迁到这个状态的线程将要执行terminated()钩子方法,只会有一个线程执行这个方法;private static final int TIDYING = 2 << COUNT_BITS;//TERMINATED 3 中止状态,已经执行完terminated()钩子方法private static final int TERMINATED = 3 << COUNT_BITS;//任务队列,当线程池中的线程达到核心线程数量时,再提交任务 就会直接提交到 workQueueprivate final BlockingQueueworkQueue;//线程池全局锁,增加worker减少worker时需要持有mainLock,修改线程池运行状态时,也需要private final ReentrantLock mainLock = new ReentrantLock();//线程池中真正存放worker的地方。private final HashSet workers = new HashSet ();private final Condition termination = mainLock.newCondition();//记录线程池生命周期内 线程数最大值private int largestPoolSize;//记录线程池所完成任务总数private long completedTaskCount;//创建线程会使用线程工厂private volatile ThreadFactory threadFactory;//拒绝策略private volatile RejectedExecutionHandler handler;//存活时间private volatile long keepAliveTime;//控制核心线程数量内的线程 是否可以被回收。true 可以,false不可以。private volatile boolean allowCoreThreadTimeOut;//核心线程池数量private volatile int corePoolSize;//线程池最大数量private volatile int maximumPoolSize;
我们的重点看的是volatile修饰的corePoolSize、maximumPoolSize以及keepAliveTime,当然threadFactory和handler也可以看下,不过这两个不是我们解决动态调整线程池的关键。对于这些volatile修饰的关键的变量,从并发角度思考的,必然是有并发读写的操作才使用volatile修饰的,在指标采集中我们看到其get的方法,对于写的操作我们可以猜测肯定提供了set的方式,这个时候我们可以搜索下setCorePoolSize,果不其然我们真的搜索到了。
public void setCorePoolSize(int corePoolSize) { if (corePoolSize < 0) throw new IllegalArgumentException(); int delta = corePoolSize - this.corePoolSize; this.corePoolSize = corePoolSize; //新设置的corePoolSize小于当前核心线程数的时候 //会调用interruptIdleWorkers方法来中断空闲的工作线程 if (workerCountOf(ctl.get()) > corePoolSize) interruptIdleWorkers(); else if (delta > 0) { //当设置的值大于当前值的时候核心线程数的时候 //按照等待队列中的任务数量来创建新的工作线程 int k = Math.min(delta, workQueue.size()); while (k-- > 0 && addWorker(null, true)) { if (workQueue.isEmpty()) break; } } }
接下来我们看下interruptIdleWorkers的源码,此处源码使用ReentrantLock可重入锁,因为Worker的是通过一个全局的HashSer存储,这里通过ReentrantLock保证线程安全。
private void interruptIdleWorkers(boolean onlyOne) { //可重入锁 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (Worker w : workers) { Thread t = w.thread; if (!t.isInterrupted() && w.tryLock()) { try { //中断当前线程 t.interrupt(); } catch (SecurityException ignore) { } finally { w.unlock(); } } if (onlyOne) break; } } finally { mainLock.unlock(); } }
接下来我们在验证一下是否存在其他相关的参数设置,如下:
public void setMaximumPoolSize(int maximumPoolSize) { if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize) throw new IllegalArgumentException(); this.maximumPoolSize = maximumPoolSize; if (workerCountOf(ctl.get()) > maximumPoolSize) interruptIdleWorkers(); } public void setKeepAliveTime(long time, TimeUnit unit) { if (time < 0) throw new IllegalArgumentException(); if (time == 0 && allowsCoreThreadTimeOut()) throw new IllegalArgumentException("Core threads must have nonzero keep alive times"); long keepAliveTime = unit.toNanos(time); long delta = keepAliveTime - this.keepAliveTime; this.keepAliveTime = keepAliveTime; if (delta < 0) interruptIdleWorkers(); } public void setRejectedExecutionHandler(RejectedExecutionHandler handler) { if (handler == null) throw new NullPointerException(); this.handler = handler; }
这里我们会发现一个问题BlockingQueue的队列容量不能修改,看到美团的文章提供的一个可修改的队列ResizableCapacityLinkedBlockingQueue,于是乎去看了一下LinkedBlockingQueue的源码,发现了关于capacity是一个final修饰的,这个时候我就思考一番,这个地方采用volatile修饰,对外暴露可修改,这样就实现了动态修改阻塞队列的大小。
如何给不同的服务之间做线程池的隔离
关于如何给不同服务之间做线程池的隔离,这里我们可以采用Hystrix的舱壁模式,也就是说针对不同服务类型的服务单独创建线程池,这样就可以实现服务之间不相互影响,不会因为某个服务导致整体的服务影响都阻塞。
实现方案
聊了这么多前置的知识储备,接下来我们来聊聊实现方案,整体的实现方案我们建立在Spring Boot的基础实现,采用Spring Cloud刷新动态配置,采用该方式比较合适单体应用,对于有Appllo和Nacos可以通过监听配置方式的来动态刷新。
Maven依赖如下;
org.springframework.boot spring-boot-starter org.springframework.boot spring-boot-starter-web org.springframework.cloud spring-cloud-context org.springframework.boot spring-boot-starter-test test org.projectlombok lombok 1.18.12 org.slf4j slf4j-api 1.7.5 ch.qos.logback logback-core 1.2.3 ch.qos.logback logback-classic 1.2.3 org.springframework.cloud spring-cloud-dependencies Hoxton.SR7 pom import
配置信息如下:
monitor.threadpool.executors[0].thread-pool-name=first-monitor-thread-poolmonitor.threadpool.executors[0].core-pool-size=4monitor.threadpool.executors[0].max-pool-size=8monitor.threadpool.executors[0].queue-capacity=100monitor.threadpool.executors[1].thread-pool-name=second-monitor-thread-poolmonitor.threadpool.executors[1].core-pool-size=2monitor.threadpool.executors[1].max-pool-size=4monitor.threadpool.executors[1].queue-capacity=40 /** * 线程池配置 * * @author wangtongzhou * @since 2022-03-11 21:41 */@Datapublic class ThreadPoolProperties { /** * 线程池名称 */ private String threadPoolName; * 核心线程数 private Integer corePoolSize = Runtime.getRuntime().availableProcessors(); * 最大线程数 private Integer maxPoolSize; * 队列最大数量 private Integer queueCapacity; * 拒绝策略 private String rejectedExecutionType = "AbortPolicy"; * 空闲线程存活时间 private Long keepAliveTime = 1L; * 空闲线程存活时间单位 private TimeUnit unit = TimeUnit.MILLISECONDS;} * 动态刷新线程池配置 * @since 2022-03-13 14:09@ConfigurationProperties(prefix = "monitor.threadpool")@Componentpublic class DynamicThreadPoolProperties { private Listexecutors;
自定可修改阻塞队列大小的方式如下:
/** * 可重新设定队列大小的阻塞队列 * * @author wangtongzhou * @since 2022-03-13 11:54 */public class ResizableCapacityLinkedBlockingQueueextends AbstractQueue implements BlockingDeque , java.io.Serializable { /* * Implemented as a simple doubly-linked list protected by a * single lock and using conditions to manage blocking. * * To implement weakly consistent iterators, it appears we need to * keep all Nodes GC-reachable from a predecessor dequeued Node. * That would cause two problems: * - allow a rogue Iterator to cause unbounded memory retention * - cause cross-generational linking of old Nodes to new Nodes if * a Node was tenured while live, which generational GCs have a * hard time dealing with, causing repeated major collections. * However, only non-deleted Nodes need to be reachable from * dequeued Nodes, and reachability does not necessarily have to * be of the kind understood by the GC. We use the trick of * linking a Node that has just been dequeued to itself. Such a * self-link implicitly means to jump to "first" (for next links) * or "last" (for prev links). */ /* * We have "diamond" multiple interface/abstract class inheritance * here, and that introduces ambiguities. Often we want the * BlockingDeque javadoc combined with the AbstractQueue * implementation, so a lot of method specs are duplicated here. */ private static final long serialVersionUID = -387911632671998426L; /** * Doubly-linked list node class */ static final class Node { /** * The item, or null if this node has been removed. */ E item; /** * One of: * - the real predecessor Node * - this Node, meaning the predecessor is tail * - null, meaning there is no predecessor */ Node prev; /** * One of: * - the real successor Node * - this Node, meaning the successor is head * - null, meaning there is no successor */ Node next; Node(E x) { item = x; } } /** * Pointer to first node. * Invariant: (first == null && last == null) || * (first.prev == null && first.item != null) */ transient Node first; /** * Pointer to last node. * Invariant: (first == null && last == null) || * (last.next == null && last.item != null) */ transient Node last; /** * Number of items in the deque */ private transient int count; /** * Maximum number of items in the deque */ private volatile int capacity; public int getCapacity() { return capacity; } public void setCapacity(int capacity) { this.capacity = capacity; } /** * Main lock guarding all access */ final ReentrantLock lock = new ReentrantLock(); /** * Condition for waiting takes */ private final Condition notEmpty = lock.newCondition(); /** * Condition for waiting puts */ private final Condition notFull = lock.newCondition(); /** * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with a capacity of * {@link Integer#MAX_VALUE}. */ public ResizableCapacityLinkedBlockingQueue() { this(Integer.MAX_VALUE); } /** * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with the given (fixed) capacity. * * @param capacity the capacity of this deque * @throws IllegalArgumentException if {@code capacity} is less than 1 */ public ResizableCapacityLinkedBlockingQueue(int capacity) { if (capacity <= 0) { throw new IllegalArgumentException(); } this.capacity = capacity; } /** * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with a capacity of * {@link Integer#MAX_VALUE}, initially containing the elements of * the given collection, added in traversal order of the * collection's iterator. * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any * of its elements are null */ public ResizableCapacityLinkedBlockingQueue(Collection extends E> c) { this(Integer.MAX_VALUE); final ReentrantLock lock = this.lock; lock.lock(); // Never contended, but necessary for visibility try { for (E e : c) { if (e == null) { throw new NullPointerException(); } if (!linkLast(new Node (e))) { throw new IllegalStateException("Deque full"); } } } finally { lock.unlock(); } } // Basic linking and unlinking operations, called only while holding lock /** * Links node as first element, or returns false if full. */ private boolean linkFirst(Node node) { // assert lock.isHeldByCurrentThread(); if (count >= capacity) { return false; } Node f = first; node.next = f; first = node; if (last == null) { last = node; } else { f.prev = node; } ++count; notEmpty.signal(); return true; } /** * Links node as last element, or returns false if full. */ private boolean linkLast(Node node) { // assert lock.isHeldByCurrentThread(); if (count >= capacity) { return false; } Node l = last; node.prev = l; last = node; if (first == null) { first = node; } else { l.next = node; } ++count; notEmpty.signal(); return true; } /** * Removes and returns first element, or null if empty. */ private E unlinkFirst() { // assert lock.isHeldByCurrentThread(); Node f = first; if (f == null) { return null; } Node n = f.next; E item = f.item; f.item = null; f.next = f; // help GC first = n; if (n == null) { last = null; } else { n.prev = null; } --count; notFull.signal(); return item; } /** * Removes and returns last element, or null if empty. */ private E unlinkLast() { // assert lock.isHeldByCurrentThread(); Node l = last; if (l == null) { return null; } Node p = l.prev; E item = l.item; l.item = null; l.prev = l; // help GC last = p; if (p == null) { first = null; } else { p.next = null; } --count; notFull.signal(); return item; } /** * Unlinks x. */ void unlink(Node x) { // assert lock.isHeldByCurrentThread(); Node p = x.prev; Node n = x.next; if (p == null) { unlinkFirst(); } else if (n == null) { unlinkLast(); } else { p.next = n; n.prev = p; x.item = null; // Don't mess with x's links. They may still be in use by // an iterator. --count; notFull.signal(); } } // BlockingDeque methods /** * @throws IllegalStateException if this deque is full * @throws NullPointerException {@inheritDoc} */ @Override public void addFirst(E e) { if (!offerFirst(e)) { throw new IllegalStateException("Deque full"); } } /** * @throws IllegalStateException if this deque is full * @throws NullPointerException {@inheritDoc} */ @Override public void addLast(E e) { if (!offerLast(e)) { throw new IllegalStateException("Deque full"); } } /** * @throws NullPointerException {@inheritDoc} */ @Override public boolean offerFirst(E e) { if (e == null) { throw new NullPointerException(); } Node node = new Node (e); final ReentrantLock lock = this.lock; lock.lock(); try { return linkFirst(node); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} */ @Override public boolean offerLast(E e) { if (e == null) throw new NullPointerException(); Node node = new Node (e); final ReentrantLock lock = this.lock; lock.lock(); try { return linkLast(node); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public void putFirst(E e) throws InterruptedException { if (e == null) { throw new NullPointerException(); } Node node = new Node (e); final ReentrantLock lock = this.lock; lock.lock(); try { while (!linkFirst(node)) { notFull.await(); } } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public void putLast(E e) throws InterruptedException { if (e == null) { throw new NullPointerException(); } Node node = new Node (e); final ReentrantLock lock = this.lock; lock.lock(); try { while (!linkLast(node)) { notFull.await(); } } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public boolean offerFirst(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) { throw new NullPointerException(); } Node node = new Node (e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (!linkFirst(node)) { if (nanos <= 0) { return false; } nanos = notFull.awaitNanos(nanos); } return true; } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public boolean offerLast(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); Node node = new Node (e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (!linkLast(node)) { if (nanos <= 0) { return false; } nanos = notFull.awaitNanos(nanos); } return true; } finally { lock.unlock(); } } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E removeFirst() { E x = pollFirst(); if (x == null) { throw new NoSuchElementException(); } return x; } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E removeLast() { E x = pollLast(); if (x == null) { throw new NoSuchElementException(); } return x; } @Override public E pollFirst() { final ReentrantLock lock = this.lock; lock.lock(); try { return unlinkFirst(); } finally { lock.unlock(); } } @Override public E pollLast() { final ReentrantLock lock = this.lock; lock.lock(); try { return unlinkLast(); } finally { lock.unlock(); } } @Override public E takeFirst() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lock(); try { E x; while ((x = unlinkFirst()) == null) { notEmpty.await(); } return x; } finally { lock.unlock(); } } @Override public E takeLast() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lock(); try { E x; while ((x = unlinkLast()) == null) { notEmpty.await(); } return x; } finally { lock.unlock(); } } @Override public E pollFirst(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { E x; while ((x = unlinkFirst()) == null) { if (nanos <= 0) { return null; } nanos = notEmpty.awaitNanos(nanos); } return x; } finally { lock.unlock(); } } @Override public E pollLast(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { E x; while ((x = unlinkLast()) == null) { if (nanos <= 0) { return null; } nanos = notEmpty.awaitNanos(nanos); } return x; } finally { lock.unlock(); } } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E getFirst() { E x = peekFirst(); if (x == null) { throw new NoSuchElementException(); } return x; } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E getLast() { E x = peekLast(); if (x == null) { throw new NoSuchElementException(); } return x; } @Override public E peekFirst() { final ReentrantLock lock = this.lock; lock.lock(); try { return (first == null) ? null : first.item; } finally { lock.unlock(); } } @Override public E peekLast() { final ReentrantLock lock = this.lock; lock.lock(); try { return (last == null) ? null : last.item; } finally { lock.unlock(); } } @Override public boolean removeFirstOccurrence(Object o) { if (o == null) { return false; } final ReentrantLock lock = this.lock; lock.lock(); try { for (Node p = first; p != null; p = p.next) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } @Override public boolean removeLastOccurrence(Object o) { if (o == null) { return false; } final ReentrantLock lock = this.lock; lock.lock(); try { for (Node p = last; p != null; p = p.prev) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } // BlockingQueue methods /** * Inserts the specified element at the end of this deque unless it would * violate capacity restrictions. When using a capacity-restricted deque, * it is generally preferable to use method {@link #offer(Object) offer}. * * This method is equivalent to {@link #addLast}. * * @throws IllegalStateException if this deque is full * @throws NullPointerException if the specified element is null */ @Override public boolean add(E e) { addLast(e); return true; } /** * @throws NullPointerException if the specified element is null */ @Override public boolean offer(E e) { return offerLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public void put(E e) throws InterruptedException { putLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { return offerLast(e, timeout, unit); } /** * Retrieves and removes the head of the queue represented by this deque. * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. * *
This method is equivalent to {@link #removeFirst() removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E remove() { return removeFirst(); } @Override public E poll() { return pollFirst(); } @Override public E take() throws InterruptedException { return takeFirst(); } @Override public E poll(long timeout, TimeUnit unit) throws InterruptedException { return pollFirst(timeout, unit); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in that * it throws an exception if this deque is empty. * *
This method is equivalent to {@link #getFirst() getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E element() { return getFirst(); } @Override public E peek() { return peekFirst(); } /** * Returns the number of additional elements that this deque can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this deque * less the current {@code size} of this deque. * *
Note that you cannot always tell if an attempt to insert * an element will succeed by inspecting {@code remainingCapacity} * because it may be the case that another thread is about to * insert or remove an element. */ @Override public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return capacity - count; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ @Override public int drainTo(Collection super E> c) { return drainTo(c, Integer.MAX_VALUE); } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ @Override public int drainTo(Collection super E> c, int maxElements) { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } if (maxElements <= 0) { return 0; } final ReentrantLock lock = this.lock; lock.lock(); try { int n = Math.min(maxElements, count); for (int i = 0; i < n; i++) { c.add(first.item); // In this order, in case add() throws. unlinkFirst(); } return n; } finally { lock.unlock(); } } // Stack methods /** * @throws IllegalStateException if this deque is full * @throws NullPointerException {@inheritDoc} */ @Override public void push(E e) { addFirst(e); } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E pop() { return removeFirst(); } // Collection methods /** * Removes the first occurrence of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * *
This method is equivalent to * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}. * * @param o element to be removed from this deque, if present * @return {@code true} if this deque changed as a result of the call */ @Override public boolean remove(Object o) { return removeFirstOccurrence(o); } /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ @Override public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return count; } finally { lock.unlock(); } } /** * Returns {@code true} if this deque contains the specified element. * More formally, returns {@code true} if and only if this deque contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this deque * @return {@code true} if this deque contains the specified element */ @Override public boolean contains(Object o) { if (o == null) { return false; } final ReentrantLock lock = this.lock; lock.lock(); try { for (Node
p = first; p != null; p = p.next) { if (o.equals(p.item)) { return true; } } return false; } finally { lock.unlock(); } } /* * TODO: Add support for more efficient bulk operations. * * We don't want to acquire the lock for every iteration, but we * also want other threads a chance to interact with the * collection, especially when count is close to capacity. */// /**// * Adds all of the elements in the specified collection to this// * queue. Attempts to addAll of a queue to itself result in// * {@code IllegalArgumentException}. Further, the behavior of// * this operation is undefined if the specified collection is// * modified while the operation is in progress.// *// * @param c collection containing elements to be added to this queue// * @return {@code true} if this queue changed as a result of the call// * @throws ClassCastException {@inheritDoc}// * @throws NullPointerException {@inheritDoc}// * @throws IllegalArgumentException {@inheritDoc}// * @throws IllegalStateException if this deque is full// * @see #add(Object)// */// public boolean addAll(Collection extends E> c) {// if (c == null)// throw new NullPointerException();// if (c == this)// throw new IllegalArgumentException();// final ReentrantLock lock = this.lock;// lock.lock();// try {// boolean modified = false;// for (E e : c)// if (linkLast(e))// modified = true;// return modified;// } finally {// lock.unlock();// }// } /** * Returns an array containing all of the elements in this deque, in * proper sequence (from first to last element). * * The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *
This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ @Override @SuppressWarnings("unchecked") public Object[] toArray() { final ReentrantLock lock = this.lock; lock.lock(); try { Object[] a = new Object[count]; int k = 0; for (Node
p = first; p != null; p = p.next) { a[k++] = p.item; } return a; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this deque, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the deque fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this deque. * * If this deque fits in the specified array with room to spare * (i.e., the array has more elements than this deque), the element in * the array immediately following the end of the deque is set to * {@code null}. * *
Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *
Suppose {@code x} is a deque known to contain only strings. * The following code can be used to dump the deque into a newly * allocated array of {@code String}: * *
{@code String[] y = x.toArray(new String[0]);}** Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the deque are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ @Override @SuppressWarnings("unchecked") public
T[] toArray(T[] a) { final ReentrantLock lock = this.lock; lock.lock(); try { if (a.length < count) { a = (T[]) java.lang.reflect.Array.newInstance (a.getClass().getComponentType(), count); } int k = 0; for (Node p = first; p != null; p = p.next) { a[k++] = (T) p.item; } if (a.length > k) { a[k] = null; } return a; } finally { lock.unlock(); } } @Override public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { Node p = first; if (p == null) { return "[]"; } StringBuilder sb = new StringBuilder(); sb.append('['); for (; ; ) { E e = p.item; sb.append(e == this ? "(this Collection)" : e); p = p.next; if (p == null) { return sb.append(']').toString(); } sb.append(',').append(' '); } } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this deque. * The deque will be empty after this call returns. */ @Override public void clear() { final ReentrantLock lock = this.lock; lock.lock(); try { for (Node f = first; f != null; ) { f.item = null; Node n = f.next; f.prev = null; f.next = null; f = n; } first = last = null; count = 0; notFull.signalAll(); } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this deque in proper sequence. * The elements will be returned in order from first (head) to last (tail). * * The returned iterator is * weakly consistent. * * @return an iterator over the elements in this deque in proper sequence */ @Override public Iterator
iterator() { return new Itr(); } /** * Returns an iterator over the elements in this deque in reverse * sequential order. The elements will be returned in order from * last (tail) to first (head). * * The returned iterator is * weakly consistent. * * @return an iterator over the elements in this deque in reverse order */ @Override public Iterator
descendingIterator() { return new DescendingItr(); } /** * Base class for Iterators for ResizableCapacityLinkedBlockIngQueue */ private abstract class AbstractItr implements Iterator { /** * The next node to return in next() */ Node next; /** * nextItem holds on to item fields because once we claim that * an element exists in hasNext(), we must return item read * under lock (in advance()) even if it was in the process of * being removed when hasNext() was called. */ E nextItem; /** * Node returned by most recent call to next. Needed by remove. * Reset to null if this element is deleted by a call to remove. */ private Node lastRet; abstract Node firstNode(); abstract Node nextNode(Node n); AbstractItr() { // set to initial position final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock; lock.lock(); try { next = firstNode(); nextItem = (next == null) ? null : next.item; } finally { lock.unlock(); } } /** * Returns the successor node of the given non-null, but * possibly previously deleted, node. */ private Node succ(Node n) { // Chains of deleted nodes ending in null or self-links // are possible if multiple interior nodes are removed. for (; ; ) { Node s = nextNode(n); if (s == null) { return null; } else if (s.item != null) { return s; } else if (s == n) { return firstNode(); } else { n = s; } } } /** * Advances next. */ void advance() { final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock; lock.lock(); try { // assert next != null; next = succ(next); nextItem = (next == null) ? null : next.item; } finally { lock.unlock(); } } @Override public boolean hasNext() { return next != null; } @Override public E next() { if (next == null) { throw new NoSuchElementException(); } lastRet = next; E x = nextItem; advance(); return x; } @Override public void remove() { Node n = lastRet; if (n == null) { throw new IllegalStateException(); } lastRet = null; final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock; lock.lock(); try { if (n.item != null) { unlink(n); } } finally { lock.unlock(); } } } /** * Forward iterator */ private class Itr extends AbstractItr { @Override Node firstNode() { return first; } @Override Node nextNode(Node n) { return n.next; } } /** * Descending iterator */ private class DescendingItr extends AbstractItr { @Override Node firstNode() { return last; } @Override Node nextNode(Node n) { return n.prev; } } /** * A customized variant of Spliterators.IteratorSpliterator */ static final class LBDSpliterator implements Spliterator { static final int MAX_BATCH = 1 << 25; // max batch array size; final ResizableCapacityLinkedBlockingQueue queue; Node current; // current node; null until initialized int batch; // batch size for splits boolean exhausted; // true when no more nodes long est; // size estimate LBDSpliterator(ResizableCapacityLinkedBlockingQueue queue) { this.queue = queue; this.est = queue.size(); } @Override public long estimateSize() { return est; } @Override public Spliterator trySplit() { Node h; final ResizableCapacityLinkedBlockingQueue q = this.queue; int b = batch; int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1; if (!exhausted && ((h = current) != null || (h = q.first) != null) && h.next != null) { Object[] a = new Object[n]; final ReentrantLock lock = q.lock; int i = 0; Node p = current; lock.lock(); try { if (p != null || (p = q.first) != null) { do { if ((a[i] = p.item) != null) { ++i; } } while ((p = p.next) != null && i < n); } } finally { lock.unlock(); } if ((current = p) == null) { est = 0L; exhausted = true; } else if ((est -= i) < 0L) { est = 0L; } if (i > 0) { batch = i; return Spliterators.spliterator (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL | Spliterator.CONCURRENT); } } return null; } @Override public void forEachRemaining(Consumer super E> action) { if (action == null) { throw new NullPointerException(); } final ResizableCapacityLinkedBlockingQueue q = this.queue; final ReentrantLock lock = q.lock; if (!exhausted) { exhausted = true; Node p = current; do { E e = null; lock.lock(); try { if (p == null) { p = q.first; } while (p != null) { e = p.item; p = p.next; if (e != null) { break; } } } finally { lock.unlock(); } if (e != null) { action.accept(e); } } while (p != null); } } @Override public boolean tryAdvance(Consumer super E> action) { if (action == null) { throw new NullPointerException(); } final ResizableCapacityLinkedBlockingQueue q = this.queue; final ReentrantLock lock = q.lock; if (!exhausted) { E e = null; lock.lock(); try { if (current == null) { current = q.first; } while (current != null) { e = current.item; current = current.next; if (e != null) { break; } } } finally { lock.unlock(); } if (current == null) { exhausted = true; } if (e != null) { action.accept(e); return true; } } return false; } @Override public int characteristics() { return Spliterator.ORDERED | Spliterator.NONNULL | Spliterator.CONCURRENT; } } /** * Returns a {@link Spliterator} over the elements in this deque. * * The returned spliterator is * weakly consistent. * *
The {@code Spliterator} reports {@link Spliterator#CONCURRENT}, * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}. * * @return a {@code Spliterator} over the elements in this deque * @implNote The {@code Spliterator} implements {@code trySplit} to permit limited * parallelism. * @since 1.8 */ @Override public Spliterator
spliterator() { return new LBDSpliterator (this); } /** * Saves this deque to a stream (that is, serializes it). * * @param s the stream * @throws java.io.IOException if an I/O error occurs * @serialData The capacity (int), followed by elements (each an * {@code Object}) in the proper order, followed by a null */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final ReentrantLock lock = this.lock; lock.lock(); try { // Write out capacity and any hidden stuff s.defaultWriteObject(); // Write out all elements in the proper order. for (Node p = first; p != null; p = p.next) { s.writeObject(p.item); } // Use trailing null as sentinel s.writeObject(null); } finally { lock.unlock(); } } /** * Reconstitutes this deque from a stream (that is, deserializes it). * * @param s the stream * @throws ClassNotFoundException if the class of a serialized object * could not be found * @throws java.io.IOException if an I/O error occurs */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); count = 0; first = null; last = null; // Read in all elements and place in queue for (; ; ) { @SuppressWarnings("unchecked") E item = (E) s.readObject(); if (item == null) { break; } add(item); } }}
自定义线程池,增加每个线程处理的耗时,以及平均耗时、最大耗时、最小耗时,以及输出监控日志信息等等;
/** * 线程池监控类 * * @author wangtongzhou * @since 2022-02-23 07:27 */public class ThreadPoolMonitor extends ThreadPoolExecutor { private static final Logger LOGGER = LoggerFactory.getLogger(ThreadPoolMonitor.class); /** * 默认拒绝策略 */ private static final RejectedExecutionHandler defaultHandler = new AbortPolicy(); /** * 线程池名称,一般以业务名称命名,方便区分 */ private String poolName; /** * 最短执行时间 */ private Long minCostTime; /** * 最长执行时间 */ private Long maxCostTime; /** * 总的耗时 */ private AtomicLong totalCostTime = new AtomicLong(); private ThreadLocalstartTimeThreadLocal = new ThreadLocal<>(); /** * 调用父类的构造方法,并初始化HashMap和线程池名称 * * @param corePoolSize 线程池核心线程数 * @param maximumPoolSize 线程池最大线程数 * @param keepAliveTime 线程的最大空闲时间 * @param unit 空闲时间的单位 * @param workQueue 保存被提交任务的队列 * @param poolName 线程池名称 */ public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, String poolName) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), poolName); } /** * 调用父类的构造方法,并初始化HashMap和线程池名称 * * @param corePoolSize 线程池核心线程数 * @param maximumPoolSize 线程池最大线程数 * @param keepAliveTime 线程的最大空闲时间 * @param unit 空闲时间的单位 * @param workQueue 保存被提交任务的队列 * @param * @param poolName 线程池名称 */ public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, RejectedExecutionHandler handler, String poolName) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), handler, poolName); } /** * 调用父类的构造方法,并初始化HashMap和线程池名称 * * @param corePoolSize 线程池核心线程数 * @param maximumPoolSize 线程池最大线程数 * @param keepAliveTime 线程的最大空闲时间 * @param unit 空闲时间的单位 * @param workQueue 保存被提交任务的队列 * @param threadFactory 线程工厂 * @param poolName 线程池名称 */ public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, String poolName) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, defaultHandler); this.poolName = poolName; } /** * 调用父类的构造方法,并初始化HashMap和线程池名称 * * @param corePoolSize 线程池核心线程数 * @param maximumPoolSize 线程池最大线程数 * @param keepAliveTime 线程的最大空闲时间 * @param unit 空闲时间的单位 * @param workQueue 保存被提交任务的队列 * @param threadFactory 线程工厂 * @param handler 拒绝策略 * @param poolName 线程池名称 */ public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler, String poolName) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler); this.poolName = poolName; } /** * 线程池延迟关闭时(等待线程池里的任务都执行完毕),统计线程池情况 */ @Override public void shutdown() { // 统计已执行任务、正在执行任务、未执行任务数量 LOGGER.info("{} 关闭线程池, 已执行任务: {}, 正在执行任务: {}, 未执行任务数量: {}", this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size()); super.shutdown(); } /** * 线程池立即关闭时,统计线程池情况 */ @Override public List shutdownNow() { // 统计已执行任务、正在执行任务、未执行任务数量 LOGGER.info("{} 立即关闭线程池,已执行任务: {}, 正在执行任务: {}, 未执行任务数量: {}", this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size()); return super.shutdownNow(); } /** * 任务执行之前,记录任务开始时间 */ @Override protected void beforeExecute(Thread t, Runnable r) { startTimeThreadLocal.set(System.currentTimeMillis()); } /** * 任务执行之后,计算任务结束时间 */ @Override protected void afterExecute(Runnable r, Throwable t) { long costTime = System.currentTimeMillis() - startTimeThreadLocal.get(); startTimeThreadLocal.remove(); maxCostTime = maxCostTime > costTime ? maxCostTime : costTime; if (getCompletedTaskCount() == 0) { minCostTime = costTime; } minCostTime = minCostTime < costTime ? minCostTime : costTime; totalCostTime.addAndGet(costTime); LOGGER.info("{}-pool-monitor: " + "任务耗时: {} ms, 初始线程数: {}, 核心线程数: {}, 执行的任务数量: {}, " + "已完成任务数量: {}, 任务总数: {}, 队列里缓存的任务数量: {}, 池中存在的最大线程数: {}, " + "最大允许的线程数: {}, 线程空闲时间: {}, 线程池是否关闭: {}, 线程池是否终止: {}", this.poolName, costTime, this.getPoolSize(), this.getCorePoolSize(), this.getActiveCount(), this.getCompletedTaskCount(), this.getTaskCount(), this.getQueue().size(), this.getLargestPoolSize(), this.getMaximumPoolSize(), this.getKeepAliveTime(TimeUnit.MILLISECONDS), this.isShutdown(), this.isTerminated()); } public Long getMinCostTime() { return minCostTime; } public Long getMaxCostTime() { return maxCostTime; } public long getAverageCostTime(){ if(getCompletedTaskCount()==0||totalCostTime.get()==0){ return 0; } return totalCostTime.get()/getCompletedTaskCount(); } /** * 生成线程池所用的线程,改写了线程池默认的线程工厂,传入线程池名称,便于问题追踪 */ static class MonitorThreadFactory implements ThreadFactory { private static final AtomicInteger poolNumber = new AtomicInteger(1); private final ThreadGroup group; private final AtomicInteger threadNumber = new AtomicInteger(1); private final String namePrefix; /** * 初始化线程工厂 * * @param poolName 线程池名称 */ MonitorThreadFactory(String poolName) { SecurityManager s = System.getSecurityManager(); group = Objects.nonNull(s) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup(); namePrefix = poolName + "-pool-" + poolNumber.getAndIncrement() + "-thread-"; } @Override public Thread newThread(Runnable r) { Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0); if (t.isDaemon()) { t.setDaemon(false); } if (t.getPriority() != Thread.NORM_PRIORITY) { t.setPriority(Thread.NORM_PRIORITY); } return t; } }}
动态修改线程池的类,通过Spring的监听器监控配置刷新方法,实现动态更新线程池的参数;
/** * 动态刷新线程池 * * @author wangtongzhou * @since 2022-03-13 14:13 */@Component@Slf4jpublic class DynamicThreadPoolManager { @Autowired private DynamicThreadPoolProperties dynamicThreadPoolProperties; /** * 存储线程池对象 */ public MapthreadPoolExecutorMap = new HashMap<>(); public Map getThreadPoolExecutorMap() { return threadPoolExecutorMap; } /** * 初始化线程池 */ @PostConstruct public void init() { createThreadPools(dynamicThreadPoolProperties); } /** * 初始化线程池的创建 * * @param dynamicThreadPoolProperties */ private void createThreadPools(DynamicThreadPoolProperties dynamicThreadPoolProperties) { dynamicThreadPoolProperties.getExecutors().forEach(config -> { if (!threadPoolExecutorMap.containsKey(config.getThreadPoolName())) { ThreadPoolMonitor threadPoolMonitor = new ThreadPoolMonitor( config.getCorePoolSize(), config.getMaxPoolSize(), config.getKeepAliveTime(), config.getUnit(), new ResizableCapacityLinkedBlockingQueue<>(config.getQueueCapacity()), RejectedExecutionHandlerEnum.getRejectedExecutionHandler(config.getRejectedExecutionType()), config.getThreadPoolName() ); threadPoolExecutorMap.put(config.getThreadPoolName(), threadPoolMonitor); } }); } /** * 调整线程池 * * @param dynamicThreadPoolProperties */ private void changeThreadPools(DynamicThreadPoolProperties dynamicThreadPoolProperties) { dynamicThreadPoolProperties.getExecutors().forEach(config -> { ThreadPoolExecutor threadPoolExecutor = threadPoolExecutorMap.get(config.getThreadPoolName()); if (Objects.nonNull(threadPoolExecutor)) { threadPoolExecutor.setCorePoolSize(config.getCorePoolSize()); threadPoolExecutor.setMaximumPoolSize(config.getMaxPoolSize()); threadPoolExecutor.setKeepAliveTime(config.getKeepAliveTime(), config.getUnit()); threadPoolExecutor.setRejectedExecutionHandler(RejectedExecutionHandlerEnum.getRejectedExecutionHandler(config.getRejectedExecutionType())); BlockingQueue queue = threadPoolExecutor.getQueue(); if (queue instanceof ResizableCapacityLinkedBlockingQueue) { ((ResizableCapacityLinkedBlockingQueue ) queue).setCapacity(config.getQueueCapacity()); } } }); } @EventListener public void envListener(EnvironmentChangeEvent event) { log.info("配置发生变更" + event); changeThreadPools(dynamicThreadPoolProperties); }}
DynamicThreadPoolPropertiesController对外暴露两个方法,第一个通过ContextRefresher提供对外刷新配置的接口,实现及时更新配置信息,第二提供一个查询接口的方法,
/** * 动态修改线程池参数 * * @author wangtongzhou * @since 2022-03-13 17:27 */@RestControllerpublic class DynamicThreadPoolPropertiesController { @Autowired private ContextRefresher contextRefresher; private DynamicThreadPoolProperties dynamicThreadPoolProperties; private DynamicThreadPoolManager dynamicThreadPoolManager; @PostMapping("/threadPool/properties") public void update() { ThreadPoolProperties threadPoolProperties = dynamicThreadPoolProperties.getExecutors().get(0); threadPoolProperties.setCorePoolSize(20); threadPoolProperties.setMaxPoolSize(50); threadPoolProperties.setQueueCapacity(200); threadPoolProperties.setRejectedExecutionType("CallerRunsPolicy"); contextRefresher.refresh(); } @GetMapping("/threadPool/properties") public MapqueryThreadPoolProperties() { Map metricMap = new HashMap<>(); List
整体上的流程到这里就完成了,算是一个Demo版,对于该组件更深入的思考我认为还可以做以下三件事情:
应该以starter的形式嵌入到应用,通过判断启动类加载的Appllo、Nacos还是默认实现;
对外可以Push、也可以是日志,还可以支持各种库,提供丰富的输出形式,这个
到此,关于"基于Spring Boot的线程池监控问题如何解决"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!