千家信息网

基于Spring Boot的线程池监控问题如何解决

发表于:2024-11-23 作者:千家信息网编辑
千家信息网最后更新 2024年11月23日,这篇文章主要介绍"基于Spring Boot的线程池监控问题如何解决",在日常操作中,相信很多人在基于Spring Boot的线程池监控问题如何解决问题上存在疑惑,小编查阅了各式资料,整理出简单好用的
千家信息网最后更新 2024年11月23日基于Spring Boot的线程池监控问题如何解决

这篇文章主要介绍"基于Spring Boot的线程池监控问题如何解决",在日常操作中,相信很多人在基于Spring Boot的线程池监控问题如何解决问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"基于Spring Boot的线程池监控问题如何解决"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

为什么需要对线程池进行监控

Java线程池作为最常使用到的并发工具,相信大家都不陌生,但是你真的确定使用对了吗?大名鼎鼎的阿里Java代码规范要求我们不使用 Executors来快速创建线程池,但是抛弃Executors,使用其它方式创建线程池就一定不会出现问题吗?本质上对于我们来说线程池本身的运行过程是一个黑盒,我们没办法了解线程池中的运行状态时,出现问题没有办法及时判断和预警。面对这种黑盒操作必须通过监控方式让其透明化,这样对我们来说才能更好的使用好线程池。因此必须对线程池做监控。

如何做线程池的监控

对于如何做监控,本质就是涉及三点,分别是数据采集、数据存储以及大盘的展示,接下来我们分说下这三点;

数据采集

采集什么数据,对于我们来说需要采集就是黑盒的数据,什么又是线程池的黑盒数据,其实也就是整个线程处理的整个流程,在整个流程中,我们可以通过ThreadPoolExecutor中的七个方法获取数据,通过这七个方法采集到的数据就可以使线程池的执行过程透明化。

  • getCorePoolSize():获取核心线程数;

  • getMaximumPoolSize:获取最大线程数;

  • getQueue():获取线程池中的阻塞队列,并通过阻塞队列中的方法获取队列长度、元素个数等;

  • getPoolSize():获取线程池中的工作线程数(包括核心线程和非核心线程);

  • getActiveCount():获取活跃线程数,也就是正在执行任务的线程;

  • getLargestPoolSize():获取线程池曾经到过的最大工作线程数;

  • getTaskCount():获取历史已完成以及正在执行的总的任务数量;

除了我们了解的这些流程以外,ThreadPoolExecutor中还提供了三种钩子函数,

  • beforeExecute():Worker线程执行任务之前会调用的方法;

  • afterExecute():在Worker线程执行任务之后会调用的方法;

  • terminated():当线程池从运行状态变更到TERMINATED状态之前调用的方法;

对于beforeExecute和afterExecute可以理解为使用Aop监听线程执行的时间,这样子我们可以对每个线程运行的时间整体做监控,terminated可以理解为线程关闭时候的监控,这样我们就可以整体获取采集到线程池生命周期的所有数据了。

数据存储以及大盘的展示

对于存储我们这个比较适合采用时序性数据库,此外现在很多成熟的监控产品都可以满足我们大屏展示的诉求,这里推荐下美团Cat和Prometheus,这里不展开进行讲解,大家可以根据自己公司的监控产品进行选择,对于不同的方案采取的存储形式会有些差异,甚至自己都可以自定义实现一个功能,反正难度不大。

进一步扩展以及思考

在实际的项目开发中我们会遇到以下场景:

  • 不同的业务采用同一个线程池,这样如果某个服务阻塞,会影响到整体共用线程池的所有服务,会触发线程池的拒绝策略;

  • 流量突然增加,需要动态调整线程池的参数,这个时候又不能重启;

针对这两种场景,我们对线程池再次进行了深入的思考:

  • 如何合理配置线程池参数;

  • 如何动态调整线程池参数;

  • 如何给不同的服务之间做线程池的隔离;

如何合理配置线程池参数

关于这个问题面试的时候也是经常被问到,我只能说这个问题开始就是一个坑,针对与CPU密集型和I/O密集型,线程池的参数是有不同设计的,也不是遵守几个公式就可以搞定,当然可以参考,我认为对于线程池合理的参数的配置是经过多次调整得到的,甚至增加和减少业务都会影响一些参数,我不太建议大家每天背书式的CPU密集型就是N+1,非CPU密集型就是2N,因此我们更希望看到线程池动态配置。

如何动态调整线程池参数

关于如何动态调整线程池,还是回到我们场景问题的解决上,对于流量突增核心就是提升线程池的处理速度,那如何提升线程池的处理速度,有两种方式,一种是加快业务的处理,也就是消费的快,显然这种在运行的业务中我们想改变还是比较困难,这个可以作为复盘的重点;还有一种就是增加消费者,增加消费者的重点就是调整核心线程数以及非核心线程数的数量。

居于这种思考,这个时候我们需要看下ThreadPoolExecutor线程池源码,首先看下开始定义的变量,通过变量的设计我们就会发现大师就是大师,大师通过AtomicInteger修饰的ctl变量,高3位存储了线程池的状态,低29存储线程的个数,通过一个变量完成两件事情,完成状态判断以及限制线程最大个数。使用一个HashSet存储Worker的引用,而Worker继承了AbstractQueuedSynchronizer,实现一个一个不可冲入的独占锁保证线程的安全性。

//用来标记线程池状态(高3位),线程个数(低29位)     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));//工作状态存储在高3位中private static final int COUNT_BITS = Integer.SIZE - 3;//线程个数所能表达的最大数值private static final int CAPACITY   = (1 << COUNT_BITS) - 1;//线程池状态//RUNNING -1 能够接收新任务,也可以处理阻塞队列中的任务private static final int RUNNING    = -1 << COUNT_BITS;//SHUTDOWN 0 不可以接受新任务,继续处理阻塞队列中的任务private static final int SHUTDOWN   =  0 << COUNT_BITS;//STOP 1 不接收新任务,不处理阻塞队列中的任务,并且会中断正在处理的任务private static final int STOP       =  1 << COUNT_BITS;//TIDYING 2 所有任务已经中止,且工作线程数量为0,最后变迁到这个状态的线程将要执行terminated()钩子方法,只会有一个线程执行这个方法;private static final int TIDYING    =  2 << COUNT_BITS;//TERMINATED 3 中止状态,已经执行完terminated()钩子方法private static final int TERMINATED =  3 << COUNT_BITS;//任务队列,当线程池中的线程达到核心线程数量时,再提交任务 就会直接提交到 workQueueprivate final BlockingQueue workQueue;//线程池全局锁,增加worker减少worker时需要持有mainLock,修改线程池运行状态时,也需要private final ReentrantLock mainLock = new ReentrantLock();//线程池中真正存放worker的地方。private final HashSet workers = new HashSet();private final Condition termination = mainLock.newCondition();//记录线程池生命周期内 线程数最大值private int largestPoolSize;//记录线程池所完成任务总数private long completedTaskCount;//创建线程会使用线程工厂private volatile ThreadFactory threadFactory;//拒绝策略private volatile RejectedExecutionHandler handler;//存活时间private volatile long keepAliveTime;//控制核心线程数量内的线程 是否可以被回收。true 可以,false不可以。private volatile boolean allowCoreThreadTimeOut;//核心线程池数量private volatile int corePoolSize;//线程池最大数量private volatile int maximumPoolSize;

我们的重点看的是volatile修饰的corePoolSize、maximumPoolSize以及keepAliveTime,当然threadFactory和handler也可以看下,不过这两个不是我们解决动态调整线程池的关键。对于这些volatile修饰的关键的变量,从并发角度思考的,必然是有并发读写的操作才使用volatile修饰的,在指标采集中我们看到其get的方法,对于写的操作我们可以猜测肯定提供了set的方式,这个时候我们可以搜索下setCorePoolSize,果不其然我们真的搜索到了。

    public void setCorePoolSize(int corePoolSize) {        if (corePoolSize < 0)            throw new IllegalArgumentException();        int delta = corePoolSize - this.corePoolSize;        this.corePoolSize = corePoolSize;        //新设置的corePoolSize小于当前核心线程数的时候        //会调用interruptIdleWorkers方法来中断空闲的工作线程        if (workerCountOf(ctl.get()) > corePoolSize)            interruptIdleWorkers();        else if (delta > 0) {            //当设置的值大于当前值的时候核心线程数的时候            //按照等待队列中的任务数量来创建新的工作线程            int k = Math.min(delta, workQueue.size());            while (k-- > 0 && addWorker(null, true)) {                if (workQueue.isEmpty())                    break;            }        }    }

接下来我们看下interruptIdleWorkers的源码,此处源码使用ReentrantLock可重入锁,因为Worker的是通过一个全局的HashSer存储,这里通过ReentrantLock保证线程安全。

    private void interruptIdleWorkers(boolean onlyOne) {        //可重入锁        final ReentrantLock mainLock = this.mainLock;        mainLock.lock();        try {            for (Worker w : workers) {                Thread t = w.thread;                if (!t.isInterrupted() && w.tryLock()) {                    try {                        //中断当前线程                        t.interrupt();                    } catch (SecurityException ignore) {                    } finally {                        w.unlock();                    }                }                if (onlyOne)                    break;            }        } finally {            mainLock.unlock();        }    }

接下来我们在验证一下是否存在其他相关的参数设置,如下:

    public void setMaximumPoolSize(int maximumPoolSize) {        if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)            throw new IllegalArgumentException();        this.maximumPoolSize = maximumPoolSize;        if (workerCountOf(ctl.get()) > maximumPoolSize)            interruptIdleWorkers();    }    public void setKeepAliveTime(long time, TimeUnit unit) {        if (time < 0)            throw new IllegalArgumentException();        if (time == 0 && allowsCoreThreadTimeOut())            throw new IllegalArgumentException("Core threads must have nonzero keep alive times");        long keepAliveTime = unit.toNanos(time);        long delta = keepAliveTime - this.keepAliveTime;        this.keepAliveTime = keepAliveTime;        if (delta < 0)            interruptIdleWorkers();    }    public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {        if (handler == null)            throw new NullPointerException();        this.handler = handler;    }

这里我们会发现一个问题BlockingQueue的队列容量不能修改,看到美团的文章提供的一个可修改的队列ResizableCapacityLinkedBlockingQueue,于是乎去看了一下LinkedBlockingQueue的源码,发现了关于capacity是一个final修饰的,这个时候我就思考一番,这个地方采用volatile修饰,对外暴露可修改,这样就实现了动态修改阻塞队列的大小。

如何给不同的服务之间做线程池的隔离

关于如何给不同服务之间做线程池的隔离,这里我们可以采用Hystrix的舱壁模式,也就是说针对不同服务类型的服务单独创建线程池,这样就可以实现服务之间不相互影响,不会因为某个服务导致整体的服务影响都阻塞。

实现方案

聊了这么多前置的知识储备,接下来我们来聊聊实现方案,整体的实现方案我们建立在Spring Boot的基础实现,采用Spring Cloud刷新动态配置,采用该方式比较合适单体应用,对于有Appllo和Nacos可以通过监听配置方式的来动态刷新。

  • Maven依赖如下;

                        org.springframework.boot            spring-boot-starter                            org.springframework.boot            spring-boot-starter-web                            org.springframework.cloud            spring-cloud-context                            org.springframework.boot            spring-boot-starter-test            test                            org.projectlombok            lombok            1.18.12                            org.slf4j            slf4j-api            1.7.5                            ch.qos.logback            logback-core            1.2.3                            ch.qos.logback            logback-classic            1.2.3                                                    org.springframework.cloud                spring-cloud-dependencies                Hoxton.SR7                pom                import                        
  • 配置信息如下:

monitor.threadpool.executors[0].thread-pool-name=first-monitor-thread-poolmonitor.threadpool.executors[0].core-pool-size=4monitor.threadpool.executors[0].max-pool-size=8monitor.threadpool.executors[0].queue-capacity=100monitor.threadpool.executors[1].thread-pool-name=second-monitor-thread-poolmonitor.threadpool.executors[1].core-pool-size=2monitor.threadpool.executors[1].max-pool-size=4monitor.threadpool.executors[1].queue-capacity=40    /** * 线程池配置 * * @author wangtongzhou  * @since 2022-03-11 21:41 */@Datapublic class ThreadPoolProperties {    /**     * 线程池名称     */    private String threadPoolName;     * 核心线程数    private Integer corePoolSize = Runtime.getRuntime().availableProcessors();     * 最大线程数    private Integer maxPoolSize;     * 队列最大数量    private Integer queueCapacity;     * 拒绝策略    private String rejectedExecutionType = "AbortPolicy";     * 空闲线程存活时间    private Long keepAliveTime = 1L;     * 空闲线程存活时间单位    private TimeUnit unit = TimeUnit.MILLISECONDS;} * 动态刷新线程池配置 * @since 2022-03-13 14:09@ConfigurationProperties(prefix = "monitor.threadpool")@Componentpublic class DynamicThreadPoolProperties {    private List executors;
  • 自定可修改阻塞队列大小的方式如下:

/** * 可重新设定队列大小的阻塞队列 * * @author wangtongzhou  * @since 2022-03-13 11:54 */public class ResizableCapacityLinkedBlockingQueue extends AbstractQueue        implements BlockingDeque, java.io.Serializable {    /*     * Implemented as a simple doubly-linked list protected by a     * single lock and using conditions to manage blocking.     *     * To implement weakly consistent iterators, it appears we need to     * keep all Nodes GC-reachable from a predecessor dequeued Node.     * That would cause two problems:     * - allow a rogue Iterator to cause unbounded memory retention     * - cause cross-generational linking of old Nodes to new Nodes if     *   a Node was tenured while live, which generational GCs have a     *   hard time dealing with, causing repeated major collections.     * However, only non-deleted Nodes need to be reachable from     * dequeued Nodes, and reachability does not necessarily have to     * be of the kind understood by the GC.  We use the trick of     * linking a Node that has just been dequeued to itself.  Such a     * self-link implicitly means to jump to "first" (for next links)     * or "last" (for prev links).     */    /*     * We have "diamond" multiple interface/abstract class inheritance     * here, and that introduces ambiguities. Often we want the     * BlockingDeque javadoc combined with the AbstractQueue     * implementation, so a lot of method specs are duplicated here.     */    private static final long serialVersionUID = -387911632671998426L;    /**     * Doubly-linked list node class     */    static final class Node {        /**         * The item, or null if this node has been removed.         */        E item;        /**         * One of:         * - the real predecessor Node         * - this Node, meaning the predecessor is tail         * - null, meaning there is no predecessor         */        Node prev;        /**         * One of:         * - the real successor Node         * - this Node, meaning the successor is head         * - null, meaning there is no successor         */        Node next;        Node(E x) {            item = x;        }    }    /**     * Pointer to first node.     * Invariant: (first == null && last == null) ||     * (first.prev == null && first.item != null)     */    transient Node first;    /**     * Pointer to last node.     * Invariant: (first == null && last == null) ||     * (last.next == null && last.item != null)     */    transient Node last;    /**     * Number of items in the deque     */    private transient int count;    /**     * Maximum number of items in the deque     */    private volatile int capacity;    public int getCapacity() {        return capacity;    }    public void setCapacity(int capacity) {        this.capacity = capacity;    }    /**     * Main lock guarding all access     */    final ReentrantLock lock = new ReentrantLock();    /**     * Condition for waiting takes     */    private final Condition notEmpty = lock.newCondition();    /**     * Condition for waiting puts     */    private final Condition notFull = lock.newCondition();    /**     * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with a capacity of     * {@link Integer#MAX_VALUE}.     */    public ResizableCapacityLinkedBlockingQueue() {        this(Integer.MAX_VALUE);    }    /**     * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with the given (fixed) capacity.     *     * @param capacity the capacity of this deque     * @throws IllegalArgumentException if {@code capacity} is less than 1     */    public ResizableCapacityLinkedBlockingQueue(int capacity) {        if (capacity <= 0) {            throw new IllegalArgumentException();        }        this.capacity = capacity;    }    /**     * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with a capacity of     * {@link Integer#MAX_VALUE}, initially containing the elements of     * the given collection, added in traversal order of the     * collection's iterator.     *     * @param c the collection of elements to initially contain     * @throws NullPointerException if the specified collection or any     *                              of its elements are null     */    public ResizableCapacityLinkedBlockingQueue(Collection c) {        this(Integer.MAX_VALUE);        final ReentrantLock lock = this.lock;        lock.lock(); // Never contended, but necessary for visibility        try {            for (E e : c) {                if (e == null) {                    throw new NullPointerException();                }                if (!linkLast(new Node(e))) {                    throw new IllegalStateException("Deque full");                }            }        } finally {            lock.unlock();        }    }    // Basic linking and unlinking operations, called only while holding lock    /**     * Links node as first element, or returns false if full.     */    private boolean linkFirst(Node node) {        // assert lock.isHeldByCurrentThread();        if (count >= capacity) {            return false;        }        Node f = first;        node.next = f;        first = node;        if (last == null) {            last = node;        } else {            f.prev = node;        }        ++count;        notEmpty.signal();        return true;    }    /**     * Links node as last element, or returns false if full.     */    private boolean linkLast(Node node) {        // assert lock.isHeldByCurrentThread();        if (count >= capacity) {            return false;        }        Node l = last;        node.prev = l;        last = node;        if (first == null) {            first = node;        } else {            l.next = node;        }        ++count;        notEmpty.signal();        return true;    }    /**     * Removes and returns first element, or null if empty.     */    private E unlinkFirst() {        // assert lock.isHeldByCurrentThread();        Node f = first;        if (f == null) {            return null;        }        Node n = f.next;        E item = f.item;        f.item = null;        f.next = f; // help GC        first = n;        if (n == null) {            last = null;        } else {            n.prev = null;        }        --count;        notFull.signal();        return item;    }    /**     * Removes and returns last element, or null if empty.     */    private E unlinkLast() {        // assert lock.isHeldByCurrentThread();        Node l = last;        if (l == null) {            return null;        }        Node p = l.prev;        E item = l.item;        l.item = null;        l.prev = l; // help GC        last = p;        if (p == null) {            first = null;        } else {            p.next = null;        }        --count;        notFull.signal();        return item;    }    /**     * Unlinks x.     */    void unlink(Node x) {        // assert lock.isHeldByCurrentThread();        Node p = x.prev;        Node n = x.next;        if (p == null) {            unlinkFirst();        } else if (n == null) {            unlinkLast();        } else {            p.next = n;            n.prev = p;            x.item = null;            // Don't mess with x's links.  They may still be in use by            // an iterator.            --count;            notFull.signal();        }    }    // BlockingDeque methods    /**     * @throws IllegalStateException if this deque is full     * @throws NullPointerException  {@inheritDoc}     */    @Override    public void addFirst(E e) {        if (!offerFirst(e)) {            throw new IllegalStateException("Deque full");        }    }    /**     * @throws IllegalStateException if this deque is full     * @throws NullPointerException  {@inheritDoc}     */    @Override    public void addLast(E e) {        if (!offerLast(e)) {            throw new IllegalStateException("Deque full");        }    }    /**     * @throws NullPointerException {@inheritDoc}     */    @Override    public boolean offerFirst(E e) {        if (e == null) {            throw new NullPointerException();        }        Node node = new Node(e);        final ReentrantLock lock = this.lock;        lock.lock();        try {            return linkFirst(node);        } finally {            lock.unlock();        }    }    /**     * @throws NullPointerException {@inheritDoc}     */    @Override    public boolean offerLast(E e) {        if (e == null) throw new NullPointerException();        Node node = new Node(e);        final ReentrantLock lock = this.lock;        lock.lock();        try {            return linkLast(node);        } finally {            lock.unlock();        }    }    /**     * @throws NullPointerException {@inheritDoc}     * @throws InterruptedException {@inheritDoc}     */    @Override    public void putFirst(E e) throws InterruptedException {        if (e == null) {            throw new NullPointerException();        }        Node node = new Node(e);        final ReentrantLock lock = this.lock;        lock.lock();        try {            while (!linkFirst(node)) {                notFull.await();            }        } finally {            lock.unlock();        }    }    /**     * @throws NullPointerException {@inheritDoc}     * @throws InterruptedException {@inheritDoc}     */    @Override    public void putLast(E e) throws InterruptedException {        if (e == null) {            throw new NullPointerException();        }        Node node = new Node(e);        final ReentrantLock lock = this.lock;        lock.lock();        try {            while (!linkLast(node)) {                notFull.await();            }        } finally {            lock.unlock();        }    }    /**     * @throws NullPointerException {@inheritDoc}     * @throws InterruptedException {@inheritDoc}     */    @Override    public boolean offerFirst(E e, long timeout, TimeUnit unit)            throws InterruptedException {        if (e == null) {            throw new NullPointerException();        }        Node node = new Node(e);        long nanos = unit.toNanos(timeout);        final ReentrantLock lock = this.lock;        lock.lockInterruptibly();        try {            while (!linkFirst(node)) {                if (nanos <= 0) {                    return false;                }                nanos = notFull.awaitNanos(nanos);            }            return true;        } finally {            lock.unlock();        }    }    /**     * @throws NullPointerException {@inheritDoc}     * @throws InterruptedException {@inheritDoc}     */    @Override    public boolean offerLast(E e, long timeout, TimeUnit unit)            throws InterruptedException {        if (e == null) throw new NullPointerException();        Node node = new Node(e);        long nanos = unit.toNanos(timeout);        final ReentrantLock lock = this.lock;        lock.lockInterruptibly();        try {            while (!linkLast(node)) {                if (nanos <= 0) {                    return false;                }                nanos = notFull.awaitNanos(nanos);            }            return true;        } finally {            lock.unlock();        }    }    /**     * @throws NoSuchElementException {@inheritDoc}     */    @Override    public E removeFirst() {        E x = pollFirst();        if (x == null) {            throw new NoSuchElementException();        }        return x;    }    /**     * @throws NoSuchElementException {@inheritDoc}     */    @Override    public E removeLast() {        E x = pollLast();        if (x == null) {            throw new NoSuchElementException();        }        return x;    }    @Override    public E pollFirst() {        final ReentrantLock lock = this.lock;        lock.lock();        try {            return unlinkFirst();        } finally {            lock.unlock();        }    }    @Override    public E pollLast() {        final ReentrantLock lock = this.lock;        lock.lock();        try {            return unlinkLast();        } finally {            lock.unlock();        }    }    @Override    public E takeFirst() throws InterruptedException {        final ReentrantLock lock = this.lock;        lock.lock();        try {            E x;            while ((x = unlinkFirst()) == null) {                notEmpty.await();            }            return x;        } finally {            lock.unlock();        }    }    @Override    public E takeLast() throws InterruptedException {        final ReentrantLock lock = this.lock;        lock.lock();        try {            E x;            while ((x = unlinkLast()) == null) {                notEmpty.await();            }            return x;        } finally {            lock.unlock();        }    }    @Override    public E pollFirst(long timeout, TimeUnit unit)            throws InterruptedException {        long nanos = unit.toNanos(timeout);        final ReentrantLock lock = this.lock;        lock.lockInterruptibly();        try {            E x;            while ((x = unlinkFirst()) == null) {                if (nanos <= 0) {                    return null;                }                nanos = notEmpty.awaitNanos(nanos);            }            return x;        } finally {            lock.unlock();        }    }    @Override    public E pollLast(long timeout, TimeUnit unit)            throws InterruptedException {        long nanos = unit.toNanos(timeout);        final ReentrantLock lock = this.lock;        lock.lockInterruptibly();        try {            E x;            while ((x = unlinkLast()) == null) {                if (nanos <= 0) {                    return null;                }                nanos = notEmpty.awaitNanos(nanos);            }            return x;        } finally {            lock.unlock();        }    }    /**     * @throws NoSuchElementException {@inheritDoc}     */    @Override    public E getFirst() {        E x = peekFirst();        if (x == null) {            throw new NoSuchElementException();        }        return x;    }    /**     * @throws NoSuchElementException {@inheritDoc}     */    @Override    public E getLast() {        E x = peekLast();        if (x == null) {            throw new NoSuchElementException();        }        return x;    }    @Override    public E peekFirst() {        final ReentrantLock lock = this.lock;        lock.lock();        try {            return (first == null) ? null : first.item;        } finally {            lock.unlock();        }    }    @Override    public E peekLast() {        final ReentrantLock lock = this.lock;        lock.lock();        try {            return (last == null) ? null : last.item;        } finally {            lock.unlock();        }    }    @Override    public boolean removeFirstOccurrence(Object o) {        if (o == null) {            return false;        }        final ReentrantLock lock = this.lock;        lock.lock();        try {            for (Node p = first; p != null; p = p.next) {                if (o.equals(p.item)) {                    unlink(p);                    return true;                }            }            return false;        } finally {            lock.unlock();        }    }    @Override    public boolean removeLastOccurrence(Object o) {        if (o == null) {            return false;        }        final ReentrantLock lock = this.lock;        lock.lock();        try {            for (Node p = last; p != null; p = p.prev) {                if (o.equals(p.item)) {                    unlink(p);                    return true;                }            }            return false;        } finally {            lock.unlock();        }    }    // BlockingQueue methods    /**     * Inserts the specified element at the end of this deque unless it would     * violate capacity restrictions.  When using a capacity-restricted deque,     * it is generally preferable to use method {@link #offer(Object) offer}.     *     * 

This method is equivalent to {@link #addLast}. * * @throws IllegalStateException if this deque is full * @throws NullPointerException if the specified element is null */ @Override public boolean add(E e) { addLast(e); return true; } /** * @throws NullPointerException if the specified element is null */ @Override public boolean offer(E e) { return offerLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public void put(E e) throws InterruptedException { putLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ @Override public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { return offerLast(e, timeout, unit); } /** * Retrieves and removes the head of the queue represented by this deque. * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. * *

This method is equivalent to {@link #removeFirst() removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E remove() { return removeFirst(); } @Override public E poll() { return pollFirst(); } @Override public E take() throws InterruptedException { return takeFirst(); } @Override public E poll(long timeout, TimeUnit unit) throws InterruptedException { return pollFirst(timeout, unit); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in that * it throws an exception if this deque is empty. * *

This method is equivalent to {@link #getFirst() getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E element() { return getFirst(); } @Override public E peek() { return peekFirst(); } /** * Returns the number of additional elements that this deque can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this deque * less the current {@code size} of this deque. * *

Note that you cannot always tell if an attempt to insert * an element will succeed by inspecting {@code remainingCapacity} * because it may be the case that another thread is about to * insert or remove an element. */ @Override public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return capacity - count; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ @Override public int drainTo(Collection c) { return drainTo(c, Integer.MAX_VALUE); } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ @Override public int drainTo(Collection c, int maxElements) { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } if (maxElements <= 0) { return 0; } final ReentrantLock lock = this.lock; lock.lock(); try { int n = Math.min(maxElements, count); for (int i = 0; i < n; i++) { c.add(first.item); // In this order, in case add() throws. unlinkFirst(); } return n; } finally { lock.unlock(); } } // Stack methods /** * @throws IllegalStateException if this deque is full * @throws NullPointerException {@inheritDoc} */ @Override public void push(E e) { addFirst(e); } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E pop() { return removeFirst(); } // Collection methods /** * Removes the first occurrence of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * *

This method is equivalent to * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}. * * @param o element to be removed from this deque, if present * @return {@code true} if this deque changed as a result of the call */ @Override public boolean remove(Object o) { return removeFirstOccurrence(o); } /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ @Override public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return count; } finally { lock.unlock(); } } /** * Returns {@code true} if this deque contains the specified element. * More formally, returns {@code true} if and only if this deque contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this deque * @return {@code true} if this deque contains the specified element */ @Override public boolean contains(Object o) { if (o == null) { return false; } final ReentrantLock lock = this.lock; lock.lock(); try { for (Node p = first; p != null; p = p.next) { if (o.equals(p.item)) { return true; } } return false; } finally { lock.unlock(); } } /* * TODO: Add support for more efficient bulk operations. * * We don't want to acquire the lock for every iteration, but we * also want other threads a chance to interact with the * collection, especially when count is close to capacity. */// /**// * Adds all of the elements in the specified collection to this// * queue. Attempts to addAll of a queue to itself result in// * {@code IllegalArgumentException}. Further, the behavior of// * this operation is undefined if the specified collection is// * modified while the operation is in progress.// *// * @param c collection containing elements to be added to this queue// * @return {@code true} if this queue changed as a result of the call// * @throws ClassCastException {@inheritDoc}// * @throws NullPointerException {@inheritDoc}// * @throws IllegalArgumentException {@inheritDoc}// * @throws IllegalStateException if this deque is full// * @see #add(Object)// */// public boolean addAll(Collection c) {// if (c == null)// throw new NullPointerException();// if (c == this)// throw new IllegalArgumentException();// final ReentrantLock lock = this.lock;// lock.lock();// try {// boolean modified = false;// for (E e : c)// if (linkLast(e))// modified = true;// return modified;// } finally {// lock.unlock();// }// } /** * Returns an array containing all of the elements in this deque, in * proper sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ @Override @SuppressWarnings("unchecked") public Object[] toArray() { final ReentrantLock lock = this.lock; lock.lock(); try { Object[] a = new Object[count]; int k = 0; for (Node p = first; p != null; p = p.next) { a[k++] = p.item; } return a; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this deque, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the deque fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this deque. * *

If this deque fits in the specified array with room to spare * (i.e., the array has more elements than this deque), the element in * the array immediately following the end of the deque is set to * {@code null}. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose {@code x} is a deque known to contain only strings. * The following code can be used to dump the deque into a newly * allocated array of {@code String}: * *

 {@code String[] y = x.toArray(new String[0]);}
*

* Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the deque are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ @Override @SuppressWarnings("unchecked") public T[] toArray(T[] a) { final ReentrantLock lock = this.lock; lock.lock(); try { if (a.length < count) { a = (T[]) java.lang.reflect.Array.newInstance (a.getClass().getComponentType(), count); } int k = 0; for (Node p = first; p != null; p = p.next) { a[k++] = (T) p.item; } if (a.length > k) { a[k] = null; } return a; } finally { lock.unlock(); } } @Override public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { Node p = first; if (p == null) { return "[]"; } StringBuilder sb = new StringBuilder(); sb.append('['); for (; ; ) { E e = p.item; sb.append(e == this ? "(this Collection)" : e); p = p.next; if (p == null) { return sb.append(']').toString(); } sb.append(',').append(' '); } } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this deque. * The deque will be empty after this call returns. */ @Override public void clear() { final ReentrantLock lock = this.lock; lock.lock(); try { for (Node f = first; f != null; ) { f.item = null; Node n = f.next; f.prev = null; f.next = null; f = n; } first = last = null; count = 0; notFull.signalAll(); } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this deque in proper sequence. * The elements will be returned in order from first (head) to last (tail). * *

The returned iterator is * weakly consistent. * * @return an iterator over the elements in this deque in proper sequence */ @Override public Iterator iterator() { return new Itr(); } /** * Returns an iterator over the elements in this deque in reverse * sequential order. The elements will be returned in order from * last (tail) to first (head). * *

The returned iterator is * weakly consistent. * * @return an iterator over the elements in this deque in reverse order */ @Override public Iterator descendingIterator() { return new DescendingItr(); } /** * Base class for Iterators for ResizableCapacityLinkedBlockIngQueue */ private abstract class AbstractItr implements Iterator { /** * The next node to return in next() */ Node next; /** * nextItem holds on to item fields because once we claim that * an element exists in hasNext(), we must return item read * under lock (in advance()) even if it was in the process of * being removed when hasNext() was called. */ E nextItem; /** * Node returned by most recent call to next. Needed by remove. * Reset to null if this element is deleted by a call to remove. */ private Node lastRet; abstract Node firstNode(); abstract Node nextNode(Node n); AbstractItr() { // set to initial position final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock; lock.lock(); try { next = firstNode(); nextItem = (next == null) ? null : next.item; } finally { lock.unlock(); } } /** * Returns the successor node of the given non-null, but * possibly previously deleted, node. */ private Node succ(Node n) { // Chains of deleted nodes ending in null or self-links // are possible if multiple interior nodes are removed. for (; ; ) { Node s = nextNode(n); if (s == null) { return null; } else if (s.item != null) { return s; } else if (s == n) { return firstNode(); } else { n = s; } } } /** * Advances next. */ void advance() { final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock; lock.lock(); try { // assert next != null; next = succ(next); nextItem = (next == null) ? null : next.item; } finally { lock.unlock(); } } @Override public boolean hasNext() { return next != null; } @Override public E next() { if (next == null) { throw new NoSuchElementException(); } lastRet = next; E x = nextItem; advance(); return x; } @Override public void remove() { Node n = lastRet; if (n == null) { throw new IllegalStateException(); } lastRet = null; final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock; lock.lock(); try { if (n.item != null) { unlink(n); } } finally { lock.unlock(); } } } /** * Forward iterator */ private class Itr extends AbstractItr { @Override Node firstNode() { return first; } @Override Node nextNode(Node n) { return n.next; } } /** * Descending iterator */ private class DescendingItr extends AbstractItr { @Override Node firstNode() { return last; } @Override Node nextNode(Node n) { return n.prev; } } /** * A customized variant of Spliterators.IteratorSpliterator */ static final class LBDSpliterator implements Spliterator { static final int MAX_BATCH = 1 << 25; // max batch array size; final ResizableCapacityLinkedBlockingQueue queue; Node current; // current node; null until initialized int batch; // batch size for splits boolean exhausted; // true when no more nodes long est; // size estimate LBDSpliterator(ResizableCapacityLinkedBlockingQueue queue) { this.queue = queue; this.est = queue.size(); } @Override public long estimateSize() { return est; } @Override public Spliterator trySplit() { Node h; final ResizableCapacityLinkedBlockingQueue q = this.queue; int b = batch; int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1; if (!exhausted && ((h = current) != null || (h = q.first) != null) && h.next != null) { Object[] a = new Object[n]; final ReentrantLock lock = q.lock; int i = 0; Node p = current; lock.lock(); try { if (p != null || (p = q.first) != null) { do { if ((a[i] = p.item) != null) { ++i; } } while ((p = p.next) != null && i < n); } } finally { lock.unlock(); } if ((current = p) == null) { est = 0L; exhausted = true; } else if ((est -= i) < 0L) { est = 0L; } if (i > 0) { batch = i; return Spliterators.spliterator (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL | Spliterator.CONCURRENT); } } return null; } @Override public void forEachRemaining(Consumer action) { if (action == null) { throw new NullPointerException(); } final ResizableCapacityLinkedBlockingQueue q = this.queue; final ReentrantLock lock = q.lock; if (!exhausted) { exhausted = true; Node p = current; do { E e = null; lock.lock(); try { if (p == null) { p = q.first; } while (p != null) { e = p.item; p = p.next; if (e != null) { break; } } } finally { lock.unlock(); } if (e != null) { action.accept(e); } } while (p != null); } } @Override public boolean tryAdvance(Consumer action) { if (action == null) { throw new NullPointerException(); } final ResizableCapacityLinkedBlockingQueue q = this.queue; final ReentrantLock lock = q.lock; if (!exhausted) { E e = null; lock.lock(); try { if (current == null) { current = q.first; } while (current != null) { e = current.item; current = current.next; if (e != null) { break; } } } finally { lock.unlock(); } if (current == null) { exhausted = true; } if (e != null) { action.accept(e); return true; } } return false; } @Override public int characteristics() { return Spliterator.ORDERED | Spliterator.NONNULL | Spliterator.CONCURRENT; } } /** * Returns a {@link Spliterator} over the elements in this deque. * *

The returned spliterator is * weakly consistent. * *

The {@code Spliterator} reports {@link Spliterator#CONCURRENT}, * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}. * * @return a {@code Spliterator} over the elements in this deque * @implNote The {@code Spliterator} implements {@code trySplit} to permit limited * parallelism. * @since 1.8 */ @Override public Spliterator spliterator() { return new LBDSpliterator(this); } /** * Saves this deque to a stream (that is, serializes it). * * @param s the stream * @throws java.io.IOException if an I/O error occurs * @serialData The capacity (int), followed by elements (each an * {@code Object}) in the proper order, followed by a null */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final ReentrantLock lock = this.lock; lock.lock(); try { // Write out capacity and any hidden stuff s.defaultWriteObject(); // Write out all elements in the proper order. for (Node p = first; p != null; p = p.next) { s.writeObject(p.item); } // Use trailing null as sentinel s.writeObject(null); } finally { lock.unlock(); } } /** * Reconstitutes this deque from a stream (that is, deserializes it). * * @param s the stream * @throws ClassNotFoundException if the class of a serialized object * could not be found * @throws java.io.IOException if an I/O error occurs */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); count = 0; first = null; last = null; // Read in all elements and place in queue for (; ; ) { @SuppressWarnings("unchecked") E item = (E) s.readObject(); if (item == null) { break; } add(item); } }}

  • 自定义线程池,增加每个线程处理的耗时,以及平均耗时、最大耗时、最小耗时,以及输出监控日志信息等等;

/** * 线程池监控类 * * @author wangtongzhou  * @since 2022-02-23 07:27 */public class ThreadPoolMonitor extends ThreadPoolExecutor {    private static final Logger LOGGER = LoggerFactory.getLogger(ThreadPoolMonitor.class);    /**     * 默认拒绝策略     */    private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();    /**     * 线程池名称,一般以业务名称命名,方便区分     */    private String poolName;    /**     * 最短执行时间     */    private Long minCostTime;    /**     * 最长执行时间     */    private Long maxCostTime;    /**     * 总的耗时     */    private AtomicLong totalCostTime = new AtomicLong();    private ThreadLocal startTimeThreadLocal = new ThreadLocal<>();    /**     * 调用父类的构造方法,并初始化HashMap和线程池名称     *     * @param corePoolSize    线程池核心线程数     * @param maximumPoolSize 线程池最大线程数     * @param keepAliveTime   线程的最大空闲时间     * @param unit            空闲时间的单位     * @param workQueue       保存被提交任务的队列     * @param poolName        线程池名称     */    public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,                             TimeUnit unit, BlockingQueue workQueue, String poolName) {        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,                Executors.defaultThreadFactory(), poolName);    }    /**     * 调用父类的构造方法,并初始化HashMap和线程池名称     *     * @param corePoolSize    线程池核心线程数     * @param maximumPoolSize 线程池最大线程数     * @param keepAliveTime   线程的最大空闲时间     * @param unit            空闲时间的单位     * @param workQueue       保存被提交任务的队列     * @param     * @param poolName        线程池名称     */    public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,                             TimeUnit unit, BlockingQueue workQueue, RejectedExecutionHandler handler, String poolName) {        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,                Executors.defaultThreadFactory(), handler, poolName);    }    /**     * 调用父类的构造方法,并初始化HashMap和线程池名称     *     * @param corePoolSize    线程池核心线程数     * @param maximumPoolSize 线程池最大线程数     * @param keepAliveTime   线程的最大空闲时间     * @param unit            空闲时间的单位     * @param workQueue       保存被提交任务的队列     * @param threadFactory   线程工厂     * @param poolName        线程池名称     */    public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,                             TimeUnit unit, BlockingQueue workQueue,                             ThreadFactory threadFactory, String poolName) {        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, defaultHandler);        this.poolName = poolName;    }    /**     * 调用父类的构造方法,并初始化HashMap和线程池名称     *     * @param corePoolSize    线程池核心线程数     * @param maximumPoolSize 线程池最大线程数     * @param keepAliveTime   线程的最大空闲时间     * @param unit            空闲时间的单位     * @param workQueue       保存被提交任务的队列     * @param threadFactory   线程工厂     * @param handler         拒绝策略     * @param poolName        线程池名称     */    public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,                             TimeUnit unit, BlockingQueue workQueue,                             ThreadFactory threadFactory, RejectedExecutionHandler handler, String poolName) {        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);        this.poolName = poolName;    }    /**     * 线程池延迟关闭时(等待线程池里的任务都执行完毕),统计线程池情况     */    @Override    public void shutdown() {        // 统计已执行任务、正在执行任务、未执行任务数量        LOGGER.info("{} 关闭线程池, 已执行任务: {}, 正在执行任务: {}, 未执行任务数量: {}",                this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());        super.shutdown();    }    /**     * 线程池立即关闭时,统计线程池情况     */    @Override    public List shutdownNow() {        // 统计已执行任务、正在执行任务、未执行任务数量        LOGGER.info("{} 立即关闭线程池,已执行任务: {}, 正在执行任务: {}, 未执行任务数量: {}",                this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());        return super.shutdownNow();    }    /**     * 任务执行之前,记录任务开始时间     */    @Override    protected void beforeExecute(Thread t, Runnable r) {        startTimeThreadLocal.set(System.currentTimeMillis());    }    /**     * 任务执行之后,计算任务结束时间     */    @Override    protected void afterExecute(Runnable r, Throwable t) {        long costTime = System.currentTimeMillis() - startTimeThreadLocal.get();        startTimeThreadLocal.remove();        maxCostTime = maxCostTime > costTime ? maxCostTime : costTime;        if (getCompletedTaskCount() == 0) {            minCostTime = costTime;        }        minCostTime = minCostTime < costTime ? minCostTime : costTime;        totalCostTime.addAndGet(costTime);        LOGGER.info("{}-pool-monitor: " +                        "任务耗时: {} ms, 初始线程数: {}, 核心线程数: {}, 执行的任务数量: {}, " +                        "已完成任务数量: {}, 任务总数: {}, 队列里缓存的任务数量: {}, 池中存在的最大线程数: {}, " +                        "最大允许的线程数: {},  线程空闲时间: {}, 线程池是否关闭: {}, 线程池是否终止: {}",                this.poolName,                costTime, this.getPoolSize(), this.getCorePoolSize(), this.getActiveCount(),                this.getCompletedTaskCount(), this.getTaskCount(), this.getQueue().size(), this.getLargestPoolSize(),                this.getMaximumPoolSize(), this.getKeepAliveTime(TimeUnit.MILLISECONDS), this.isShutdown(), this.isTerminated());    }    public Long getMinCostTime() {        return minCostTime;    }    public Long getMaxCostTime() {        return maxCostTime;    }    public long getAverageCostTime(){        if(getCompletedTaskCount()==0||totalCostTime.get()==0){            return 0;        }        return totalCostTime.get()/getCompletedTaskCount();    }    /**     * 生成线程池所用的线程,改写了线程池默认的线程工厂,传入线程池名称,便于问题追踪     */    static class MonitorThreadFactory implements ThreadFactory {        private static final AtomicInteger poolNumber = new AtomicInteger(1);        private final ThreadGroup group;        private final AtomicInteger threadNumber = new AtomicInteger(1);        private final String namePrefix;        /**         * 初始化线程工厂         *         * @param poolName 线程池名称         */        MonitorThreadFactory(String poolName) {            SecurityManager s = System.getSecurityManager();            group = Objects.nonNull(s) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();            namePrefix = poolName + "-pool-" + poolNumber.getAndIncrement() + "-thread-";        }        @Override        public Thread newThread(Runnable r) {            Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);            if (t.isDaemon()) {                t.setDaemon(false);            }            if (t.getPriority() != Thread.NORM_PRIORITY) {                t.setPriority(Thread.NORM_PRIORITY);            }            return t;        }    }}
  • 动态修改线程池的类,通过Spring的监听器监控配置刷新方法,实现动态更新线程池的参数;

/** * 动态刷新线程池 * * @author wangtongzhou * @since 2022-03-13 14:13 */@Component@Slf4jpublic class DynamicThreadPoolManager {    @Autowired    private DynamicThreadPoolProperties dynamicThreadPoolProperties;    /**     * 存储线程池对象     */    public Map threadPoolExecutorMap = new HashMap<>();    public Map getThreadPoolExecutorMap() {        return threadPoolExecutorMap;    }    /**     * 初始化线程池     */    @PostConstruct    public void init() {        createThreadPools(dynamicThreadPoolProperties);    }    /**     * 初始化线程池的创建     *     * @param dynamicThreadPoolProperties     */    private void createThreadPools(DynamicThreadPoolProperties dynamicThreadPoolProperties) {        dynamicThreadPoolProperties.getExecutors().forEach(config -> {            if (!threadPoolExecutorMap.containsKey(config.getThreadPoolName())) {                ThreadPoolMonitor threadPoolMonitor = new ThreadPoolMonitor(                        config.getCorePoolSize(),                        config.getMaxPoolSize(),                        config.getKeepAliveTime(),                        config.getUnit(),                        new ResizableCapacityLinkedBlockingQueue<>(config.getQueueCapacity()),                        RejectedExecutionHandlerEnum.getRejectedExecutionHandler(config.getRejectedExecutionType()),                        config.getThreadPoolName()                );                threadPoolExecutorMap.put(config.getThreadPoolName(),                        threadPoolMonitor);            }        });    }    /**     * 调整线程池     *     * @param dynamicThreadPoolProperties     */    private void changeThreadPools(DynamicThreadPoolProperties dynamicThreadPoolProperties) {        dynamicThreadPoolProperties.getExecutors().forEach(config -> {            ThreadPoolExecutor threadPoolExecutor = threadPoolExecutorMap.get(config.getThreadPoolName());            if (Objects.nonNull(threadPoolExecutor)) {                threadPoolExecutor.setCorePoolSize(config.getCorePoolSize());                threadPoolExecutor.setMaximumPoolSize(config.getMaxPoolSize());                threadPoolExecutor.setKeepAliveTime(config.getKeepAliveTime(), config.getUnit());                threadPoolExecutor.setRejectedExecutionHandler(RejectedExecutionHandlerEnum.getRejectedExecutionHandler(config.getRejectedExecutionType()));                BlockingQueue queue = threadPoolExecutor.getQueue();                if (queue instanceof ResizableCapacityLinkedBlockingQueue) {                    ((ResizableCapacityLinkedBlockingQueue) queue).setCapacity(config.getQueueCapacity());                }            }        });    }    @EventListener    public void envListener(EnvironmentChangeEvent event) {        log.info("配置发生变更" + event);        changeThreadPools(dynamicThreadPoolProperties);    }}
  • DynamicThreadPoolPropertiesController对外暴露两个方法,第一个通过ContextRefresher提供对外刷新配置的接口,实现及时更新配置信息,第二提供一个查询接口的方法,

/** * 动态修改线程池参数 * * @author wangtongzhou * @since 2022-03-13 17:27 */@RestControllerpublic class DynamicThreadPoolPropertiesController {    @Autowired    private ContextRefresher contextRefresher;    private DynamicThreadPoolProperties dynamicThreadPoolProperties;    private DynamicThreadPoolManager dynamicThreadPoolManager;    @PostMapping("/threadPool/properties")    public void update() {        ThreadPoolProperties threadPoolProperties =                dynamicThreadPoolProperties.getExecutors().get(0);        threadPoolProperties.setCorePoolSize(20);        threadPoolProperties.setMaxPoolSize(50);        threadPoolProperties.setQueueCapacity(200);        threadPoolProperties.setRejectedExecutionType("CallerRunsPolicy");        contextRefresher.refresh();    }    @GetMapping("/threadPool/properties")    public Map queryThreadPoolProperties() {        Map metricMap = new HashMap<>();        List threadPools = new ArrayList<>();        dynamicThreadPoolManager.getThreadPoolExecutorMap().forEach((k, v) -> {            ThreadPoolMonitor threadPoolMonitor = (ThreadPoolMonitor) v;            Map poolInfo = new HashMap<>();            poolInfo.put("thread.pool.name", k);            poolInfo.put("thread.pool.core.size", threadPoolMonitor.getCorePoolSize());            poolInfo.put("thread.pool.largest.size", threadPoolMonitor.getLargestPoolSize());            poolInfo.put("thread.pool.max.size", threadPoolMonitor.getMaximumPoolSize());            poolInfo.put("thread.pool.thread.count", threadPoolMonitor.getPoolSize());            poolInfo.put("thread.pool.max.costTime", threadPoolMonitor.getMaxCostTime());            poolInfo.put("thread.pool.average.costTime", threadPoolMonitor.getAverageCostTime());            poolInfo.put("thread.pool.min.costTime", threadPoolMonitor.getMinCostTime());            poolInfo.put("thread.pool.active.count", threadPoolMonitor.getActiveCount());            poolInfo.put("thread.pool.completed.taskCount", threadPoolMonitor.getCompletedTaskCount());            poolInfo.put("thread.pool.queue.name", threadPoolMonitor.getQueue().getClass().getName());            poolInfo.put("thread.pool.rejected.name", threadPoolMonitor.getRejectedExecutionHandler().getClass().getName());            poolInfo.put("thread.pool.task.count", threadPoolMonitor.getTaskCount());            threadPools.add(poolInfo);        });        metricMap.put("threadPools", threadPools);        return metricMap;}

整体上的流程到这里就完成了,算是一个Demo版,对于该组件更深入的思考我认为还可以做以下三件事情:

  • 应该以starter的形式嵌入到应用,通过判断启动类加载的Appllo、Nacos还是默认实现;

  • 对外可以Push、也可以是日志,还可以支持各种库,提供丰富的输出形式,这个

到此,关于"基于Spring Boot的线程池监控问题如何解决"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!

0