Pandas如何安装使用
这篇文章主要介绍了Pandas如何安装使用,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
1. 安装
如果做数据分析用途建议使用Anaconda,自带pandas numy 以及很多库。
Anaconda 安装地址:https://www.continuum.io/downloads
安装之后可以在terminal 输入 conda 开头的命令(类似pip),例如list 查看已经安装的包,以及进行常用的install update等动作。
2. Import
绝大部分时候pandas都被使用者import为pd,根据作者的描述其实pandas是panel data的缩写(而不是熊猫)
import pandas as pd
3. DataFrame
DataFrame是Pandas用来处理数据最常见的格式,一张二维的表,有行,列和值。类似于一个数据库里的table 或者excel中的worksheet。如果有一个DataFrame叫df, df.columns可以得到所有的列标签,同理df.index可以得到所有的行标签。
4. 读取数据
4.1 从excel中读取数据
raw = pd.read_excel('%s%s.xlsx' %path %filename, sheetname='Data', skiprows= 1)
数据会被读取到一个叫raw的DataFrame中,sheetname可以指定读某个工作表,skiprow可以跳过初始N行的数据。
4.2 从csv中读取数据
raw = pd.read_csv('%s%s.csv' %path %filename)
5. 增删改查
5.1 增删列
新增列,位置在最后一列
raw['新列名'] = 'string'
在中间增列,使用 df.insert()
df.insert(位置,'列名',值)
例如,在raw df第二列(index不算一列)插入一列,名为city,值为source_data的 [city]列
raw.insert(1,'column_name',source_data['data1'])
删除列
del raw['列名']
5.2 改列名
5.2.1 一次性改变所有的列名
cols = ['name_1', 'name_2', 'name_3']
raw= raw[cols]
5.2.2 修改某个列名
使用df.rename(), 注意如果df中有多个old_name列的话都会被一并重命名为new_name
df=df.rename(columns = {'old_name':'new_name'})
5.3 改index
把某列设为index,原index会被删除
raw = raw.set_index('column_name')
reset_index(),新index是以0开始的递增整数列,原index会变成一个新的列。
raw = raw.reset_index()
如果不需要原来的index中的值可以加drop = True:
raw = raw.reset_index(drop=True)
5.4 编辑值(计算值)
5.4.1 四则运算
raw['data1'] = raw['data1'] *100
raw['data2'] = (raw['data1']+raw['data3'])/raw['data4']
raw['total'] = raw.sum(axis=1)
5.5 查列
5.5.1 筛选某列包含某值(raw df中 GEO CODE为CN的所有数据)
raw = raw[raw['GEO_CODE']=='CN']
5.5.2 多条件筛选
raw = raw[(raw['GEO_CODE']=='CN')&(raw['METRIC']=='Conversion Rate')]
5.5.3 筛选多个列
required_key = ['User_ID','SEO visits','SEA visits','Conversion Rate']
raw = raw[raw['METRIC_KEY'].isin(required_key)]
5.6 去重
5.6.1 去重使用drop_duplicates(),主要有2个参数:
subset 需要去重的值
keep,在遇到重复值时保留第一个(keep = 'first')or最后一(keep = 'last')
df = df.drop_duplicates(subset = 'column_name', keep = 'last')
5.6.2 因为去重时,保留的值很简单是取第一个或最后一个,所以需要搭配sort_values()来保证留下的值是你想要的。sort_values()默认是升序ascending,由小到大。
df = df.sort_values(by='column_name')
df = df.drop_duplicates(subset = 'column_name', keep = 'last')
6 Excel功能相关
6.1 Excel的数据透视表
pd.pivot_table()
主要有3个参数,index, columns,value, 以及aggfunc
index相当于行标签
columns相当于列标签
value相当于用来计算值,配合aggfunc来计算count/mean/average
注意value不能使用index 和columns已经使用过的值,这点和excel不同。
pivot= pd.pivot_table(raw, values = 'Response ID', index= ['Country'], columns=['NPS category'], aggfunc=np.size)
aggfunc目前用过的有计数np.size 汇总np.sum 平均np.average np.mean 中位数np.median
6.2 DataFrame的融合 (vlookup or hookup)
因为excel的公式是在某个单元格中,而DataFrame一般是一次性处理行或列的数据,给某行/列根据其他行/列的数据引用赋值就相当于表格的融合。
主要用到2个方法:
pd.merge()
pd.concat()
详情请看下节
6.3 pd.merge()
pd.merge()非常类似数据库中join的操作,参数很丰富:
merged_df = pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False)
merge可以提供关系型数据库中常用的几种合并方式,空值会用NaN填充:
下面是几个常用参数的详解:
参数on
pd.merge(df1, df2, on = 'xxx') #on的参数用来确定2个表共同的column。
on在这里就相当于vlookup中lookup value的定位
参数merge
pd.merge(df1, df2, how= 'xxx') #how的参数用来确定 merge method 。
Merge method和SQL join的对应关系如下:
Merge method | SQL Join Name | Description |
---|---|---|
left | LEFT OUTER JOIN | 只使用左表的键(key) |
right | RIGHT OUTER JOIN | 只使用右表的键 |
outer | FULL OUTER JOIN | 使用两表的并集的键 |
iner | INNER JOIN | 使用两表的交集的键 |
如果使用pd.merge实现vlookup时,正好二者的index就是共有值,只要
pd.merge(main_data,to_lookup_data,on ='left')就OK了
参数left_on right_on
to bu input
参数left_index right_index
to bu input
6.4 pd.concat()
如果两个DataFrame column相同,二者上下拼接在一起 (增加数据行)
pd.concat([df1,df2])
如果两个DataFrame index相同,二者左右拼接在一起 (增加数据列)
pd.concat([df1,df2], axis = 1)
如果有多个DataFrame, column相同的情况下:
dfs = [df1,df2,df3,df4]
result = pd.concat(dfs)
关于pd.merge()和pd.concat() 更多细节请参考官网:
http://pandas.pydata.org/pandas-docs/stable/merging.html
7. 数据输出
假设现在有一个名为raw的DataFrame需要输出到C盘根目录
7.1 输出到csv
DataFrame自带to_csv()功能,注意如果有中文建议加encoding参数,如果不需要index可加 index= False 参数。
raw.to_csv('C:\File_name.csv', encoding = 'utf-8', index = False)
7.2 输出到Excel
使用pandas自带的 Excel Writer生成2010格式的excel,
from pandas import ExcelWriter
path = 'C:\'
writer = ExcelWriter('%sFile_name.xlsx' %path) #指定Excel文件名
raw.to_excel(writer, sheet_name = 'worksheet_name') #指定工作表名称
writer.save()
7.3 输出到数据库
如果要存数据库呢? RDBS和NOSQL
Mysql
MongoDB
To be input..
8.使用datetime进行时间相关的操作
在python中用datetime也可以实现同excel中常用的日期函数一样的功能
8.1 创建现在的时间点为对象
import datetime
now = datetime.datetime.now()
today = datetime.datetime.today()
8.2 时间的位移
start_date = dt.date(today.year-2,today.month-1,today.day)
end_date = dt.date(today.year,today.month-3,today.day+1)
如果月份/日期 超过限制会报错
所以可能需要写一个循环去输出这些日期
date_list = [] while start_date < end_date: if start_date.month < 12: date_list.append(start_date.strftime('%Y-%m')) start_date = datetime.date(start_date.year,start_date.month +1,start_date.day) else: date_list.append(start_date.strftime('%Y-%m')) start_date = datetime.date(start_date.year+1,start_date.month-11,start_date.day)
8.3 调整格式
如上面所示,使用strftime()可以调整时间的格式,可以调整的选项非常多,参考:
http://www.runoob.com/python/att-time-strftime.html
%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身
8.4 周数的计算
8.5 工作日的计算
Excel中有个很方便的函数叫networkdays,给出起始日期,结束日期和holiday可以计算两个日期间的工作天数。而pandas或者datetime对这个需求支持的不好,所以找到了这个module: business_calendar
https://pypi.python.org/pypi/business_calendar/
8.5.1 计算日期之间的工作日数量
例如,求16年2月1日~29日的工作日有几天,已知条件:
周一到周五都上班
2月8日到12日为休假
date1 = datetime.datetime(2016,1,31)#注意如果写2月1日,当天是不包含在内的,所以写1月31日date2 = datetime.datetime(2016,2,29) cal = Calendar(workdays =[MO, TU, WE, TH, FR], holidays=['2016-02-08','2016-02-09','2016-02-10','2016-02-11','2016-02-12'])bsday = cal.busdaycount(date1, date2)print (bsday)
感谢你能够认真阅读完这篇文章,希望小编分享的"Pandas如何安装使用"这篇文章对大家有帮助,同时也希望大家多多支持,关注行业资讯频道,更多相关知识等着你来学习!