java怎么实现高性能的秒杀系统
这篇"java怎么实现高性能的秒杀系统"文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇"java怎么实现高性能的秒杀系统"文章吧。
首先来看看最终架构图:
先简单根据这个图谈下请求的流转,因为后面不管怎么改进,这些都是不变的:
前端请求进入 Web 层,对应的代码就是 Controller。
之后将真正的库存校验、下单等请求发往 Service 层,其中 RPC 调用依然采用的 Dubbo,只是更新为***版本。
Service 层再对数据进行落地,下单完成。
***制
抛开秒杀这个场景来说,正常的一个下单流程可以简单分为以下几步:
校验库存
扣库存
创建订单
支付
基于上文的架构,我们有了以下实现,先看看实际项目的结构:
还是和以前一样:
提供出一个 API 用于 Service 层实现,以及 Web 层消费。
Web 层简单来说就是一个 Spring MVC。
Service 层则是真正的数据落地。
SSM-SECONDS-KILL-ORDER-CONSUMER 则是后文会提到的 Kafka 消费。
数据库也是只有简单的两张表模拟下单:
CREATE TABLE `stock` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `name` varchar(50) NOT NULL DEFAULT '' COMMENT '名称', `count` int(11) NOT NULL COMMENT '库存', `sale` int(11) NOT NULL COMMENT '已售', `version` int(11) NOT NULL COMMENT '乐观锁,版本号', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8; CREATE TABLE `stock_order` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `sid` int(11) NOT NULL COMMENT '库存ID', `name` varchar(30) NOT NULL DEFAULT '' COMMENT '商品名称', `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=55 DEFAULT CHARSET=utf8;
Web 层 Controller 实现:
@Autowired private StockService stockService; @Autowired private OrderService orderService; @RequestMapping("/createWrongOrder/{sid}") @ResponseBody public String createWrongOrder(@PathVariable int sid) { logger.info("sid=[{}]", sid); int id = 0; try { id = orderService.createWrongOrder(sid); } catch (Exception e) { logger.error("Exception",e); } return String.valueOf(id); }
其中 Web 作为一个消费者调用看 OrderService 提供出来的 Dubbo 服务。
Service 层, OrderService 实现,首先是对 API 的实现(会在 API 提供出接口):
@Service public class OrderServiceImpl implements OrderService { @Resource(name = "DBOrderService") private com.crossoverJie.seconds.kill.service.OrderService orderService ; @Override public int createWrongOrder(int sid) throws Exception { return orderService.createWrongOrder(sid); } }
这里只是简单调用了 DBOrderService 中的实现,DBOrderService 才是真正的数据落地,也就是写数据库了。
DBOrderService 实现:
Transactional(rollbackFor = Exception.class) @Service(value = "DBOrderService") public class OrderServiceImpl implements OrderService { @Resource(name = "DBStockService") private com.crossoverJie.seconds.kill.service.StockService stockService; @Autowired private StockOrderMapper orderMapper; @Override public int createWrongOrder(int sid) throws Exception{ //校验库存 Stock stock = checkStock(sid); //扣库存 saleStock(stock); //创建订单 int id = createOrder(stock); return id; } private Stock checkStock(int sid) { Stock stock = stockService.getStockById(sid); if (stock.getSale().equals(stock.getCount())) { throw new RuntimeException("库存不足"); } return stock; } private int saleStock(Stock stock) { stock.setSale(stock.getSale() + 1); return stockService.updateStockById(stock); } private int createOrder(Stock stock) { StockOrder order = new StockOrder(); order.setSid(stock.getId()); order.setName(stock.getName()); int id = orderMapper.insertSelective(order); return id; } }
预先初始化了 10 条库存。手动调用下 createWrongOrder/1 接口发现:
库存表
订单表
一切看起来都没有问题,数据也正常。但是当用 JMeter 并发测试时:
测试配置是:300 个线程并发。测试两轮来看看数据库中的结果:
请求都响应成功,库存确实也扣完了,但是订单却生成了 124 条记录。这显然是典型的超卖现象。
其实现在再去手动调用接口会返回库存不足,但为时晚矣。
乐观锁更新
怎么来避免上述的现象呢?最简单的做法自然是乐观锁了,来看看具体实现:
其实其他的都没怎么改,主要是 Service 层:
@Override public int createOptimisticOrder(int sid) throws Exception { //校验库存 Stock stock = checkStock(sid); //乐观锁更新库存 saleStockOptimistic(stock); //创建订单 int id = createOrder(stock); return id; } private void saleStockOptimistic(Stock stock) { int count = stockService.updateStockByOptimistic(stock); if (count == 0){ throw new RuntimeException("并发更新库存失败") ; } }
对应的 XML:
update stock sale = sale + 1, version = version + 1, WHERE id = #{id,jdbcType=INTEGER} AND version = #{version,jdbcType=INTEGER}
同样的测试条件,我们再进行上面的测试 /createOptimisticOrder/1:
这次发现无论是库存订单都是 OK 的。
查看日志发现:
很多并发请求会响应错误,这就达到了效果。
提高吞吐量
为了进一步提高秒杀时的吞吐量以及响应效率,这里的 Web 和 Service 都进行了横向扩展:
Web 利用 Nginx 进行负载。
Service 也是多台应用。
再用 JMeter 测试时可以直观的看到效果。
由于我是在阿里云的一台小水管服务器进行测试的,加上配置不高、应用都在同一台,所以并没有完全体现出性能上的优势( Nginx 做负载转发时候也会增加额外的网络消耗)。
Shell 脚本实现简单的 CI
由于应用多台部署之后,手动发版测试的痛苦相信经历过的都有体会。
这次并没有精力去搭建完整的 CICD,只是写了一个简单的脚本实现了自动化部署,希望给这方面没有经验的同学带来一点启发。
构建 Web:
#!/bin/bash # 构建 web 消费者 #read appname appname="consumer" echo "input="$appname PID=$(ps -ef | grep $appname | grep -v grep | awk '{print $2}') # 遍历杀掉 pid for var in ${PID[@]}; do echo "loop pid= $var" kill -9 $var done echo "kill $appname success" cd .. git pull cd SSM-SECONDS-KILL mvn -Dmaven.test.skip=true clean package echo "build war success" cp /home/crossoverJie/SSM/SSM-SECONDS-KILL/SSM-SECONDS-KILL-WEB/target/SSM-SECONDS-KILL-WEB-2.2.0-SNAPSHOT.war /home/crossoverJie/tomcat/tomcat-dubbo-consumer-8083/webapps echo "cp tomcat-dubbo-consumer-8083/webapps ok!" cp /home/crossoverJie/SSM/SSM-SECONDS-KILL/SSM-SECONDS-KILL-WEB/target/SSM-SECONDS-KILL-WEB-2.2.0-SNAPSHOT.war /home/crossoverJie/tomcat/tomcat-dubbo-consumer-7083-slave/webapps echo "cp tomcat-dubbo-consumer-7083-slave/webapps ok!" sh /home/crossoverJie/tomcat/tomcat-dubbo-consumer-8083/bin/startup.sh echo "tomcat-dubbo-consumer-8083/bin/startup.sh success" sh /home/crossoverJie/tomcat/tomcat-dubbo-consumer-7083-slave/bin/startup.sh echo "tomcat-dubbo-consumer-7083-slave/bin/startup.sh success" echo "start $appname success"
构建 Service:
# 构建服务提供者 #read appname appname="provider" echo "input="$appname PID=$(ps -ef | grep $appname | grep -v grep | awk '{print $2}') #if [ $? -eq 0 ]; then # echo "process id:$PID" #else # echo "process $appname not exit" # exit #fi # 遍历杀掉 pid for var in ${PID[@]}; do echo "loop pid= $var" kill -9 $var done echo "kill $appname success" cd .. git pull cd SSM-SECONDS-KILL mvn -Dmaven.test.skip=true clean package echo "build war success" cp /home/crossoverJie/SSM/SSM-SECONDS-KILL/SSM-SECONDS-KILL-SERVICE/target/SSM-SECONDS-KILL-SERVICE-2.2.0-SNAPSHOT.war /home/crossoverJie/tomcat/tomcat-dubbo-provider-8080/webapps echo "cp tomcat-dubbo-provider-8080/webapps ok!" cp /home/crossoverJie/SSM/SSM-SECONDS-KILL/SSM-SECONDS-KILL-SERVICE/target/SSM-SECONDS-KILL-SERVICE-2.2.0-SNAPSHOT.war /home/crossoverJie/tomcat/tomcat-dubbo-provider-7080-slave/webapps echo "cp tomcat-dubbo-provider-7080-slave/webapps ok!" sh /home/crossoverJie/tomcat/tomcat-dubbo-provider-8080/bin/startup.sh echo "tomcat-dubbo-provider-8080/bin/startup.sh success" sh /home/crossoverJie/tomcat/tomcat-dubbo-provider-7080-slave/bin/startup.sh echo "tomcat-dubbo-provider-8080/bin/startup.sh success" echo "start $appname success"
之后每当我有更新,只需要执行这两个脚本就可以帮我自动构建。都是最基础的 Linux 命令,相信大家都看得明白。
乐观锁更新 + 分布式限流
上文的结果看似没有问题,其实还差得远呢。这里只是模拟了 300 个并发没有问题,但是当请求达到了 3000,3W,300W 呢?
虽说可以横向扩展支撑更多的请求,但是能不能利用最少的资源解决问题呢?
仔细分析下会发现:假设我的商品一共只有 10 个库存,那么无论你多少人来买其实最终也最多只有 10 人可以下单成功。所以其中会有 99% 的请求都是无效的。
大家都知道:大多数应用数据库都是压倒骆驼的***一根稻草。通过 Druid 的监控来看看之前请求数据库的情况:
因为 Service 是两个应用:
数据库也有 20 多个连接。怎么样来优化呢?其实很容易想到的就是分布式限流。
我们将并发控制在一个可控的范围之内,然后快速失败这样就能***程度的保护系统。
①distributed-redis-tool ⬆v1.0.3
因为加上该组件之后所有的请求都会经过 Redis,所以对 Redis 资源的使用也是要非常小心。
②API 更新
修改之后的 API 如下:
@Configuration public class RedisLimitConfig { private Logger logger = LoggerFactory.getLogger(RedisLimitConfig.class); @Value("${redis.limit}") private int limit; @Autowired private JedisConnectionFactory jedisConnectionFactory; @Bean public RedisLimit build() { RedisLimit redisLimit = new RedisLimit.Builder(jedisConnectionFactory, RedisToolsConstant.SINGLE) .limit(limit) .build(); return redisLimit; } }
这里构建器改用了 JedisConnectionFactory,所以得配合 Spring 来一起使用。
并在初始化时显示传入 Redis 是以集群方式部署还是单机(强烈建议集群,限流之后对 Redis 还是有一定的压力)。
③限流实现
既然 API 更新了,实现自然也要修改:
/** * limit traffic * @return if true */ public boolean limit() { //get connection Object connection = getConnection(); Object result = limitRequest(connection); if (FAIL_CODE != (Long) result) { return true; } else { return false; } } private Object limitRequest(Object connection) { Object result = null; String key = String.valueOf(System.currentTimeMillis() / 1000); if (connection instanceof Jedis){ result = ((Jedis)connection).eval(script, Collections.singletonList(key), Collections.singletonList(String.valueOf(limit))); ((Jedis) connection).close(); }else { result = ((JedisCluster) connection).eval(script, Collections.singletonList(key), Collections.singletonList(String.valueOf(limit))); try { ((JedisCluster) connection).close(); } catch (IOException e) { logger.error("IOException",e); } } return result; } private Object getConnection() { Object connection ; if (type == RedisToolsConstant.SINGLE){ RedisConnection redisConnection = jedisConnectionFactory.getConnection(); connection = redisConnection.getNativeConnection(); }else { RedisClusterConnection clusterConnection = jedisConnectionFactory.getClusterConnection(); connection = clusterConnection.getNativeConnection() ; } return connection; }
如果是原生的 Spring 应用得采用 @SpringControllerLimit(errorCode=200) 注解。
实际使用如下,Web 端:
/** * 乐观锁更新库存 限流 * @param sid * @return */ @SpringControllerLimit(errorCode = 200) @RequestMapping("/createOptimisticLimitOrder/{sid}") @ResponseBody public String createOptimisticLimitOrder(@PathVariable int sid) { logger.info("sid=[{}]", sid); int id = 0; try { id = orderService.createOptimisticOrder(sid); } catch (Exception e) { logger.error("Exception",e); } return String.valueOf(id); }
Service 端就没什么更新了,依然是采用的乐观锁更新数据库。
再压测看下效果 /createOptimisticLimitOrderByRedis/1:
首先是看结果没有问题,再看数据库连接以及并发请求数都有明显的下降。
乐观锁更新+分布式限流+Redis 缓存
仔细观察 Druid 监控数据发现这个 SQL 被多次查询:
其实这是实时查询库存的 SQL,主要是为了在每次下单之前判断是否还有库存。
这也是个优化点。这种数据我们完全可以放在内存中,效率比在数据库要高很多。
由于我们的应用是分布式的,所以堆内缓存显然不合适,Redis 就非常适合。
这次主要改造的是 Service 层:
每次查询库存时走 Redis。
扣库存时更新 Redis。
需要提前将库存信息写入 Redis。(手动或者程序自动都可以)
主要代码如下:
@Override public int createOptimisticOrderUseRedis(int sid) throws Exception { //检验库存,从 Redis 获取 Stock stock = checkStockByRedis(sid); //乐观锁更新库存 以及更新 Redis saleStockOptimisticByRedis(stock); //创建订单 int id = createOrder(stock); return id ; } private Stock checkStockByRedis(int sid) throws Exception { Integer count = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_COUNT + sid)); Integer sale = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_SALE + sid)); if (count.equals(sale)){ throw new RuntimeException("库存不足 Redis currentCount=" + sale); } Integer version = Integer.parseInt(redisTemplate.opsForValue().get(RedisKeysConstant.STOCK_VERSION + sid)); Stock stock = new Stock() ; stock.setId(sid); stock.setCount(count); stock.setSale(sale); stock.setVersion(version); return stock; } /** * 乐观锁更新数据库 还要更新 Redis * @param stock */ private void saleStockOptimisticByRedis(Stock stock) { int count = stockService.updateStockByOptimistic(stock); if (count == 0){ throw new RuntimeException("并发更新库存失败") ; } //自增 redisTemplate.opsForValue().increment(RedisKeysConstant.STOCK_SALE + stock.getId(),1) ; redisTemplate.opsForValue().increment(RedisKeysConstant.STOCK_VERSION + stock.getId(),1) ; }
压测看看实际效果 /createOptimisticLimitOrderByRedis/1:
***发现数据没问题,数据库的请求与并发也都下来了。
乐观锁更新+分布式限流+Redis 缓存+Kafka 异步
***的优化还是想如何来再次提高吞吐量以及性能的。我们上文所有例子其实都是同步请求,完全可以利用同步转异步来提高性能啊。
这里我们将写订单以及更新库存的操作进行异步化,利用 Kafka 来进行解耦和队列的作用。
每当一个请求通过了限流到达了 Service 层通过了库存校验之后就将订单信息发给 Kafka ,这样一个请求就可以直接返回了。
消费程序再对数据进行入库落地。因为异步了,所以最终需要采取回调或者是其他提醒的方式提醒用户购买完成。
这里代码较多就不贴了,消费程序其实就是把之前的 Service 层的逻辑重写了一遍,不过采用的是 Spring Boot。
以上就是关于"java怎么实现高性能的秒杀系统"这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注行业资讯频道。