Pytorch优化器内部的各参数信息打印结果
发表于:2024-11-26 作者:千家信息网编辑
千家信息网最后更新 2024年11月26日,这篇文章主要介绍"Pytorch优化器内部的各参数信息打印结果",在日常操作中,相信很多人在Pytorch优化器内部的各参数信息打印结果问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希
千家信息网最后更新 2024年11月26日Pytorch优化器内部的各参数信息打印结果
这篇文章主要介绍"Pytorch优化器内部的各参数信息打印结果",在日常操作中,相信很多人在Pytorch优化器内部的各参数信息打印结果问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"Pytorch优化器内部的各参数信息打印结果"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
代码:
import timeimport torchimport torch.optim as optimclass Model(torch.nn.Module):def __init__(self):super(Model,self).__init__()self.conv1=torch.nn.Sequential(#输入torch.Size([64, 1, 28, 28])torch.nn.Conv2d(1,64,kernel_size=3,stride=1,padding=1),# 用于搭建卷积神经网络的卷积层,主要的输入参数有输入通道数、 # 输出通道数、卷积核大小、卷积核移动步长和Padding值。 # 输出维度 = 1+(输入维度-卷积核大小+2*padding)/卷积核步长 #输出torch.Size([64, 64, 28, 28])torch.nn.ReLU(),#输出torch.Size([64, 64, 28, 28])torch.nn.Conv2d(64,128,kernel_size=3,stride=1,padding=1),#输出torch.Size([64, 128, 28, 28])torch.nn.ReLU(),torch.nn.MaxPool2d(stride=2,kernel_size=2)# 主要的输入参数是池化窗口大小、池化窗口移动步长和Padding值 #输出torch.Size([64, 128, 14, 14]))self.dense=torch.nn.Sequential(#输入torch.Size([64, 14*14*128])torch.nn.Linear(14*14*128,1024),#class torch.nn.Linear(in_features,out_features,bias = True)#输出torch.Size([64, 1024])torch.nn.ReLU(),torch.nn.Dropout(p=0.5),# torch.nn.Dropout类用于防止卷积神经网络在训练的过程中 # 发生过拟合,其工作原理简单来说就是在模型训练的过程中, # 以一定的随机概率将卷积神经网络模型的部分参数归零,以达 # 到减少相邻两层神经连接的目的。这样做是为了让我们最后训 # 练出来的模型对各部分的权重参数不产生过度依赖,从而防止 # 过拟合。对于torch.nn.Dropout类,我们可以对随机概率值 # 的大小进行设置,如果不做任何设置,就使用默认的概率值0.5。 torch.nn.Linear(1024,10)#输出torch.Size([64, 10]) ) def forward(self,x):#torch.Size([64, 1, 28, 28])x = self.conv1(x)#输出torch.Size([64, 128, 14, 14])x = x.view(-1,14*14*128)#view()函数作用是将一个多行的Tensor,拼接成一行,torch.Size([64, 14*14*128])x = self.dense(x)#输出torch.Size([64, 10])return xmodel = Model() lr = 0.005optimizer = optim.Adam(model.parameters(), lr=lr)for param_group in optimizer.param_groups:print(param_group.keys())# print(type(param_group))print([type(value) for value in param_group.values()])print('查看学习率: ',param_group['lr'])
打印结果展示:
Windows PowerShell版权所有 (C) Microsoft Corporation。保留所有权利。尝试新的跨平台 PowerShell https://aka.ms/pscore6加载个人及系统配置文件用了 925 毫秒。(base) PS C:\Users\chenxuqi\Desktop\新建文件夹> & 'D:\Anaconda3\envs\ssd4pytorch2_2_0\python.exe' 'c:\Users\chenxuqi\.vscode\extensions\ms-python.python-2020.11.371526539\pythonFiles\lib\python\debugpy\launcher' '60077' '--' 'c:\Users\chenxuqi\Desktop\新建文件夹\tt.py' dict_keys(['params', 'lr', 'betas', 'eps', 'weight_decay', 'amsgrad'])[, , , , , ]查看学习率: 0.005(base) PS C:\Users\chenxuqi\Desktop\新建文件夹> conda activate ssd4pytorch2_2_0(ssd4pytorch2_2_0) PS C:\Users\chenxuqi\Desktop\新建文件夹>
到此,关于"Pytorch优化器内部的各参数信息打印结果"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!
输出
参数
卷积
学习
输入
结果
文件
信息
大小
文件夹
神经
概率
模型
神经网络
网络
步长
更多
维度
过程
通道
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
网络安全模式如何联网
河北索睿软件开发公司
按标题和文章检索数据库
查看国产服务器型号
华为服务器操作系统中文名
我的世界服务器是迷你玩家吗
数据库上传
高校927事件软件开发者
保定华创网络技术有限公司
在连接时steam服务器时
日本药物溶出数据库
哪些业务场景需要数据库锁
软件开发 职业规划
苹果app如何与软件开发
魔兽世界白银之手服务器
软件开发学什么专业大数据
把电脑变成代理服务器
动产监管软件开发定制方案介绍
合肥光学系统设计软件开发
信阳直播软件开发
上海学生网络技术开发计划表
深圳软件开发工作室
r410服务器进安全模式
你以为如何健全我国的征信数据库
网络安全提示语大全
pc服务器怎么连接电视
上海驿社互联网科技有限公司
u8数据库转换
怎样找网络安全黑客
熟悉mysql数据库系统