如何利用Jupyter Notekook做初步分析
发表于:2025-02-19 作者:千家信息网编辑
千家信息网最后更新 2025年02月19日,这篇文章主要介绍如何利用Jupyter Notekook做初步分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!最近一段时间都是Jupyter Notebook做策略的最初版本
千家信息网最后更新 2025年02月19日如何利用Jupyter Notekook做初步分析
这篇文章主要介绍如何利用Jupyter Notekook做初步分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
最近一段时间都是Jupyter Notebook做策略的最初版本设计,就是行情导入画图一类。
之前做个dataframe做分析容易,这个算是简化版本。
新建一个DataAnalyzer 类,这个简单很多,支持从csv和mongodb导入行情数据,和从1分钟k线整合不同分钟k线
下面是导入1分钟螺纹钢数据,整合为5分钟K线
from pymongo import MongoClient, ASCENDINGimport pandas as pdimport numpy as npfrom datetime import datetimeimport talibimport matplotlib.pyplot as pltimport scipy.stats as st%matplotlib inline%config InlineBackend.figure_format = 'retina'class DataAnalyzer(object): """ """ def __init__(self, exportpath="C:\Project\\", datformat=['datetime', 'high', 'low', 'open', 'close','volume']): self.mongohost = None self.mongoport = None self.db = None self.collection = None self.df = pd.DataFrame() self.exportpath = exportpath self.datformat = datformat self.startBar = 2 self.endBar = 12 self.step = 2 self.pValue = 0.015 def db2df(self, db, collection, start, end, mongohost="localhost", mongoport=27017, export2csv=False): """读取MongoDB数据库行情记录,输出到Dataframe中""" self.mongohost = mongohost self.mongoport = mongoport self.db = db self.collection = collection dbClient = MongoClient(self.mongohost, self.mongoport, connectTimeoutMS=500) db = dbClient[self.db] cursor = db[self.collection].find({'datetime':{'$gte':start, '$lt':end}}).sort("datetime",ASCENDING) self.df = pd.DataFrame(list(cursor)) self.df = self.df[self.datformat] self.df = self.df.reset_index(drop=True) path = self.exportpath + self.collection + ".csv" if export2csv == True: self.df.to_csv(path, index=True, header=True) return self.df def csv2df(self, csvpath, dataname="csv_data", export2csv=False): """读取csv行情数据,输入到Dataframe中""" csv_df = pd.read_csv(csvpath) self.df = csv_df[self.datformat] self.df["datetime"] = pd.to_datetime(self.df['datetime']) # self.df["high"] = self.df['high'].astype(float) # self.df["low"] = self.df['low'].astype(float) # self.df["open"] = self.df['open'].astype(float) # self.df["close"] = self.df['close'].astype(float) # self.df["volume"] = self.df['volume'].astype(int) self.df = self.df.reset_index(drop=True) path = self.exportpath + dataname + ".csv" if export2csv == True: self.df.to_csv(path, index=True, header=True) return self.df def df2Barmin(self, inputdf, barmins, crossmin=1, export2csv=False): """输入分钟k线dataframe数据,合并多多种数据,例如三分钟/5分钟等,如果开始时间是9点1分,crossmin = 0;如果是9点0分,crossmin为1""" dfbarmin = pd.DataFrame() highBarMin = 0 lowBarMin = 0 openBarMin = 0 volumeBarmin = 0 datetime = 0 for i in range(0, len(inputdf) - 1): bar = inputdf.iloc[i, :].to_dict() if openBarMin == 0: openBarmin = bar["open"] if highBarMin == 0: highBarMin = bar["high"] else: highBarMin = max(bar["high"], highBarMin) if lowBarMin == 0: lowBarMin = bar["low"] else: lowBarMin = min(bar["low"], lowBarMin) closeBarMin = bar["close"] datetime = bar["datetime"] volumeBarmin += int(bar["volume"]) # X分钟已经走完 if not (bar["datetime"].minute + crossmin) % barmins: # 可以用X整除 # 生成上一X分钟K线的时间戳 barMin = {'datetime': datetime, 'high': highBarMin, 'low': lowBarMin, 'open': openBarmin, 'close': closeBarMin, 'volume' : volumeBarmin} dfbarmin = dfbarmin.append(barMin, ignore_index=True) highBarMin = 0 lowBarMin = 0 openBarMin = 0 volumeBarmin = 0 if export2csv == True: dfbarmin.to_csv(self.exportpath + "bar" + str(barmins)+ str(self.collection) + ".csv", index=True, header=True) return dfbarminexportpath = "C:\\Project\\"DA = DataAnalyzer(exportpath)#数据库导入start = datetime.strptime("20190920", '%Y%m%d')end = datetime.now()dfrb8888 = DA.db2df(db="VnTrader_1Min_Db", collection="rb8888", start = start, end = end,export2csv=True)dfrb5min = DA.df2Barmin(dfrb8888,5,crossmin=1, export2csv=True)dfrb5min.tail()
2. 计算5分钟K线的参照,包括标准差,rsi,5分钟均线,和40分钟均线
logdata = pd.DataFrame()logdata['close'] =(dfrb5min['close'])# logdata['tr'] = talib.ATR(np.array(dfrb8888['high']), np.array(dfrb8888['low']), np.array(dfrb8888['close']) ,1)# logdata['atr'] = talib.ATR(np.array(dfrb8888['high']), np.array(dfrb8888['low']), np.array(dfrb8888['close']) ,20)logdata['std20'] = talib.STDDEV( np.array(dfrb5min['close']) ,20)logdata['rsi30'] = talib.RSI(np.array(dfrb5min['close']) ,30)logdata['sma5'] = talib.SMA(np.array(dfrb5min['close']) ,5)logdata['sma40'] = talib.SMA(np.array(dfrb5min['close']) ,40)logdata.plot(subplots=True,figsize=(18,16))
3. 使用快慢均线策略,显示买入卖出点
closeArray = np.array(logdata['close'])listup,listdown = [],[]for i in range(1,len(logdata['close'])): if logdata.loc[i,'sma5'] > logdata.loc[i,'sma40'] and logdata.loc[i-1,'sma5'] < logdata.loc[i-1,'sma40']: listup.append(i) elif logdata.loc[i,'sma5'] < logdata.loc[i,'sma40'] and logdata.loc[i-1,'sma5'] > logdata.loc[i-1,'sma40']: listdown.append(i)fig=plt.figure(figsize=(18,6))plt.plot(closeArray, color='y', lw=2.)plt.plot(closeArray, '^', markersize=5, color='r', label='UP signal', markevery=listup)plt.plot(closeArray, 'v', markersize=5, color='g', label='DOWN signal', markevery=listdown)plt.legend()plt.show()
以上是"如何利用Jupyter Notekook做初步分析"这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注行业资讯频道!
数据
行情
分析
均线
时间
内容
数据库
版本
策略
篇文章
整合
输入
不同
价值
兴趣
多种
小伙
小伙伴
就是
快慢
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
思想上重视网络安全
计算机网络技术比赛比什么
流动网络安全性
江苏个税申报代理服务器地址
网络技术安全就业
数据库如何打开mdf文件
我的世界纯净服务器手机版
湖南省计算机软件开发培训班
坚持依法管理网络安全
一念逍遥已满的服务器能创号吗
有一个云服务器赚钱
软件开发职位晋升答辩
温州助力智慧校园软件开发
BMC界面获取服务器bmc日志
老年人网络安全活动方案
it软件开发精英大赛总结
数据库嵌套另一个数据库查询
icc网络安全测试工作流程
网络安全股起飞
网络安全正确使用方法
中国人民银行网站查数据库
数据库连接成功状态
河南通用软件开发零售价格
山东济南交通学院网络安全
网络安全题材电影
浙江诺友网络技术有限公司
计算机网络技术科目考试
河北项目软件开发定制费用
如何看数据库版本ora
两会网络安全传输