R语言中编辑器的相关性分析是怎样的
发表于:2024-11-11 作者:千家信息网编辑
千家信息网最后更新 2024年11月11日,本篇文章为大家展示了R语言中编辑器的相关性分析是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。R语言中cor函数,只能计算相关系数,如果想要计算显著性,
千家信息网最后更新 2024年11月11日R语言中编辑器的相关性分析是怎样的
本篇文章为大家展示了R语言中编辑器的相关性分析是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
R语言中cor函数,只能计算相关系数,如果想要计算显著性,需要两两用cor.test
进行,如果是多列数据,操作比较麻烦。这里介绍两个包,非常方便的进行多列数据的相关系数及其显著性的检验,并且给出可视化。
1. 模拟数据
这里模拟出10列数据,转化为数据库,是100行10列的数据,目的是为了计算这10列的相关系数及其显著性,虽然随机数没有显著性可言,但是作为一个演示,还是很可以说明问题的。
> set.seed(123)
> dd = as.data.frame(matrix(rnorm(1000),100,10))
> head(dd)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 -0.56047565 -0.71040656 2.1988103 -0.7152422 -0.07355602 -0.60189285 1.07401226 -0.7282191 0.3562833 -1.0141142
2 -0.23017749 0.25688371 1.3124130 -0.7526890 -1.16865142 -0.99369859 -0.02734697 -1.5404424 -0.6580102 -0.7913139
3 1.55870831 -0.24669188 -0.2651451 -0.9385387 -0.63474826 1.02678506 -0.03333034 -0.6930946 0.8552022 0.2995937
4 0.07050839 -0.34754260 0.5431941 -1.0525133 -0.02884155 0.75106130 -1.51606762 0.1188494 1.1529362 1.6390519
5 0.12928774 -0.95161857 -0.4143399 -0.4371595 0.67069597 -1.50916654 0.79038534 -1.3647095 0.2762746 1.0846170
6 1.71506499 -0.04502772 -0.4762469 0.3311792 -1.65054654 -0.09514745 -0.21073418 0.5899827 0.1441047 -0.6245675
2. 计算相关系数及显著性
首先要载入Hmisc
这个包,因为我们要用这个包里面的rcorr
函数,如果没有这个包,那就运行命令install.packages("Hmisc")
安装即可。
❝题外话,这种蓝色的代码高亮,真是太好看了,我进而想到王者荣耀的皮肤那么多人购买真的是有很多人在乎颜值的,进而推测出我钻石五星段位的持久性与我没有氪金有很强的关联性,因为充钱的快乐只能N连胜的喜悦才可以体会。顺便说一句,当你N连跪之后就把游戏卸了洗洗睡吧,我今天都把腾讯的企业微信给投诉了,是截图投诉的,然后领导告诉我"知道为什么腾讯把你公众号封一个月吧?打游戏不氪金还瞎比比。。。"
❞
> # 计算相关系数及显著性
> library(Hmisc)#加载包
> res2 <- rcorr(as.matrix(dd))
> res2
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 1.00 -0.05 -0.13 -0.04 -0.19 -0.06 -0.03 0.18 -0.02 0.01
V2 -0.05 1.00 0.03 0.04 -0.13 0.11 0.08 -0.03 -0.05 -0.09
V3 -0.13 0.03 1.00 -0.04 -0.02 0.02 0.01 -0.12 -0.05 -0.01
V4 -0.04 0.04 -0.04 1.00 -0.02 -0.09 -0.06 0.17 -0.17 0.25
V5 -0.19 -0.13 -0.02 -0.02 1.00 0.21 -0.01 -0.14 -0.04 -0.02
V6 -0.06 0.11 0.02 -0.09 0.21 1.00 -0.06 0.09 0.07 -0.03
V7 -0.03 0.08 0.01 -0.06 -0.01 -0.06 1.00 0.00 -0.13 -0.02
V8 0.18 -0.03 -0.12 0.17 -0.14 0.09 0.00 1.00 0.00 0.02
V9 -0.02 -0.05 -0.05 -0.17 -0.04 0.07 -0.13 0.00 1.00 -0.02
V10 0.01 -0.09 -0.01 0.25 -0.02 -0.03 -0.02 0.02 -0.02 1.00
n= 100
P
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 0.6246 0.2002 0.6632 0.0547 0.5767 0.7343 0.0706 0.8234 0.9135
V2 0.6246 0.7626 0.6650 0.1952 0.2567 0.4398 0.7435 0.6543 0.3653
V3 0.2002 0.7626 0.6576 0.8061 0.8573 0.9317 0.2544 0.5985 0.8866
V4 0.6632 0.6650 0.6576 0.8492 0.3737 0.5284 0.0950 0.1008 0.0139
V5 0.0547 0.1952 0.8061 0.8492 0.0392 0.9488 0.1628 0.6958 0.8741
V6 0.5767 0.2567 0.8573 0.3737 0.0392 0.5225 0.3515 0.4622 0.8046
V7 0.7343 0.4398 0.9317 0.5284 0.9488 0.5225 0.9979 0.2012 0.8398
V8 0.0706 0.7435 0.2544 0.0950 0.1628 0.3515 0.9979 0.9936 0.8107
V9 0.8234 0.6543 0.5985 0.1008 0.6958 0.4622 0.2012 0.9936 0.8225
V10 0.9135 0.3653 0.8866 0.0139 0.8741 0.8046 0.8398 0.8107 0.8225
3. 显著性的可视化
上面有相关系数,有对应的显著性,但是R语言做完统计如果没有可视化,就像吃完饭没有喝汤,总感觉少了什么,那就可视化吧!
> library(PerformanceAnalytics)#加载包
> chart.Correlation(dd, histogram=TRUE, pch=19)
4. 完整代码
set.seed(123)
dd = as.data.frame(matrix(rnorm(1000),100,10))
head(dd)
# 计算相关系数及显著性
library(Hmisc)#加载包
res2 <- rcorr(as.matrix(dd))
res2
# 可视化
library(PerformanceAnalytics)#加载包
chart.Correlation(dd, histogram=TRUE, pch=19)
上述内容就是R语言中编辑器的相关性分析是怎样的,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注行业资讯频道。
显著
系数
数据
可视化
语言
相关性
编辑器
分析
代码
内容
函数
技能
知识
腾讯
投诉
好看
简明
喜悦
简明扼要
两个
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
中国网络服务器终端在哪个地方
怎么看期刊收录于哪个数据库
网络安全包括哪几方面内容
魔兽世界轮回服服务器关闭
163邮件服务器
简述数据库行为设计
如何从数据库随机复制数据
济南微信公众号软件开发公司
软件开发项目角色思维图
数据库的应用技术有哪些
南京嵌入式软件开发教程
武汉市国家网络安全基地
全球十大网络安全公司
财务报表网络安全
怎么在数据库找到存储过程
pg数据库 时间比较
vid数据库
用友数据库链接
简答题 网络安全
数据库网上音乐店
山东税控盘安全接入服务器地址
软件开发多大年龄就做不了啦
沈逸网络安全大会
西安润讯数码网络技术
数据库技术的安全性
物联网通信与网络技术概述
roblox服务器
电工网络安全故事
excel分析数据软件开发
数据库连接打印机