千家信息网

Python怎么利用networkx画图绘制Les Misérables人物关系

发表于:2024-11-23 作者:千家信息网编辑
千家信息网最后更新 2024年11月23日,这篇文章主要介绍"Python怎么利用networkx画图绘制Les Misérables人物关系"的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇"Python怎
千家信息网最后更新 2024年11月23日Python怎么利用networkx画图绘制Les Misérables人物关系

这篇文章主要介绍"Python怎么利用networkx画图绘制Les Misérables人物关系"的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇"Python怎么利用networkx画图绘制Les Misérables人物关系"文章能帮助大家解决问题。

数据集介绍

《悲惨世界》中的人物关系图,图中共77个节点、254条边。

数据集截图:

打开README文件:

Les Misérables network, part of the Koblenz Network Collection===========================================================================This directory contains the TSV and related files of the moreno_lesmis network: This undirected network contains co-occurances of characters in Victor Hugo's novel 'Les Misérables'. A node represents a character and an edge between two nodes shows that these two characters appeared in the same chapter of the the book. The weight of each link indicates how often such a co-appearance occured.More information about the network is provided here: http://konect.cc/networks/moreno_lesmisFiles:     meta.moreno_lesmis -- Metadata about the network     out.moreno_lesmis -- The adjacency matrix of the network in whitespace-separated values format, with one edge per line      The meaning of the columns in out.moreno_lesmis are:         First column: ID of from node         Second column: ID of to node        Third column (if present): weight or multiplicity of edge        Fourth column (if present):  timestamp of edges Unix time        Third column: edge weightUse the following References for citation:@MISC{konect:2017:moreno_lesmis,    title = {Les Misérables network dataset -- {KONECT}},    month = oct,    year = {2017},    url = {http://konect.cc/networks/moreno_lesmis}}@book{konect:knuth2993,        title = {The {Stanford} {GraphBase}: A Platform for Combinatorial Computing},        author = {Knuth, Donald Ervin},        volume = {37},        year = {1993},        publisher = {Addison-Wesley Reading},}@book{konect:knuth2993,        title = {The {Stanford} {GraphBase}: A Platform for Combinatorial Computing},        author = {Knuth, Donald Ervin},        volume = {37},        year = {1993},        publisher = {Addison-Wesley Reading},}@inproceedings{konect,        title = {{KONECT} -- {The} {Koblenz} {Network} {Collection}},        author = {Jérôme Kunegis},        year = {2013},        booktitle = {Proc. Int. Conf. on World Wide Web Companion},        pages = {1343--1350},        url = {http://dl.acm.org/citation.cfm?id=2488173},        url_presentation = {https://www.slideshare.net/kunegis/presentationwow},        url_web = {http://konect.cc/},        url_citations = {https://scholar.google.com/scholar?cites=7174338004474749050},}@inproceedings{konect,        title = {{KONECT} -- {The} {Koblenz} {Network} {Collection}},        author = {Jérôme Kunegis},        year = {2013},        booktitle = {Proc. Int. Conf. on World Wide Web Companion},        pages = {1343--1350},        url = {http://dl.acm.org/citation.cfm?id=2488173},        url_presentation = {https://www.slideshare.net/kunegis/presentationwow},        url_web = {http://konect.cc/},        url_citations = {https://scholar.google.com/scholar?cites=7174338004474749050},}

从中可以得知:该图是一个无向图,节点表示《悲惨世界》中的人物,两个节点之间的边表示这两个人物出现在书的同一章,边的权重表示两个人物(节点)出现在同一章中的频率。

真正的数据在out.moreno_lesmis_lesmis中,打开并另存为csv文件:

数据处理

networkx中对无向图的初始化代码为:

g = nx.Graph()g.add_nodes_from([i for i in range(1, 78)])g.add_edges_from([(1, 2, {'weight': 1})])

节点的初始化很容易解决,我们主要解决边的初始化:先将dataframe转为列表,然后将其中每个元素转为元组。

df = pd.read_csv('out.csv')res = df.values.tolist()for i in range(len(res)):    res[i][2] = dict({'weight': res[i][2]})res = [tuple(x) for x in res]print(res)

res输出如下(部分):

[(1, 2, {'weight': 1}), (2, 3, {'weight': 8}), (2, 4, {'weight': 10}), (2, 5, {'weight': 1}), (2, 6, {'weight': 1}), (2, 7, {'weight': 1}), (2, 8, {'weight': 1})...]

因此图的初始化代码为:

g = nx.Graph()g.add_nodes_from([i for i in range(1, 78)])g.add_edges_from(res)

画图

nx.draw(g)plt.show()

networkx自带的数据集

忙活了半天发现networkx有自带的数据集,其中就有悲惨世界的人物关系图:

g = nx.les_miserables_graph()nx.draw(g, with_labels=True)plt.show()

完整代码

# -*- coding: utf-8 -*-import networkx as nximport matplotlib.pyplot as pltimport pandas as pd# 77 254df = pd.read_csv('out.csv')res = df.values.tolist()for i in range(len(res)):    res[i][2] = dict({'weight': res[i][2]})res = [tuple(x) for x in res]print(res)# 初始化图g = nx.Graph()g.add_nodes_from([i for i in range(1, 78)])g.add_edges_from(res)g = nx.les_miserables_graph()nx.draw(g, with_labels=True)plt.show()

关于"Python怎么利用networkx画图绘制Les Misérables人物关系"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注行业资讯频道,小编每天都会为大家更新不同的知识点。

0