Kubernetes如何通过Device Plugins来使用NVIDIA GPU
本篇文章为大家展示了Kubernetes如何通过Device Plugins来使用NVIDIA GPU,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
Device Plugins
Device Pulgins在Kubernetes 1.10中是beta特性,开始于Kubernetes 1.8,用来给第三方设备厂商通过插件化的方式将设备资源对接到Kubernetes,给容器提供Extended Resources。
通过Device Plugins方式,用户不需要改Kubernetes的代码,由第三方设备厂商开发插件,实现Kubernetes Device Plugins的相关接口即可。
目前关注度比较高的Device Plugins实现有:
Nvidia提供的GPU插件:NVIDIA device plugin for Kubernetes
高性能低延迟RDMA卡插件:RDMA device plugin for Kubernetes
低延迟Solarflare万兆网卡驱动:Solarflare Device Plugin
Device plugins启动时,对外暴露几个gRPC Service提供服务,并通过/var/lib/kubelet/device-plugins/kubelet.sock
向kubelet进行注册。
Device Plugins Registration
在Kubernetes 1.10之前的版本,默认disable DevicePlugins,用户需要在Feature Gate中enable。
在Kubernetes 1.10,默认enable DevicePlugins,用户可以在Feature Gate中disable it。
当DevicePlugins Feature Gate enable,kubelet就会暴露一个Register gRPC接口。Device Plugins通过调用Register接口完成Device的注册。
Register接口描述如下:
pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:440 type RegistrationServer interface { Register(context.Context, *RegisterRequest) (*Empty, error) } pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:87 type RegisterRequest struct { // Version of the API the Device Plugin was built against Version string `protobuf:"bytes,1,opt,name=version,proto3" json:"version,omitempty"` // Name of the unix socket the device plugin is listening on // PATH = path.Join(DevicePluginPath, endpoint) Endpoint string `protobuf:"bytes,2,opt,name=endpoint,proto3" json:"endpoint,omitempty"` // Schedulable resource name. As of now it's expected to be a DNS Label ResourceName string `protobuf:"bytes,3,opt,name=resource_name,json=resourceName,proto3" json:"resource_name,omitempty"` // Options to be communicated with Device Manager Options *DevicePluginOptions `protobuf:"bytes,4,opt,name=options" json:"options,omitempty"` }
RegisterRequest要求的参数如下:
对于nvidia gpu,只有一个PreStartRequired选项,表示每个Container启动前是否要调用Device Plugin的PreStartContainer接口(是Kubernetes 1.10中Device Plugin Interface接口之一),默认为false。
vendor/k8s.io/kubernetes/pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:71 func (m *NvidiaDevicePlugin) GetDevicePluginOptions(context.Context, *pluginapi.Empty) (*pluginapi.DevicePluginOptions, error) { return &pluginapi.DevicePluginOptions{}, nil } github.com/NVIDIA/k8s-device-plugin/server.go:80 type DevicePluginOptions struct { // Indicates if PreStartContainer call is required before each container start PreStartRequired bool `protobuf:"varint,1,opt,name=pre_start_required,json=preStartRequired,proto3" json:"pre_start_required,omitempty"` }
Version, 目前有v1alpha,v1beta1两个版本。
Endpoint, 表示device plugin暴露的socket名称,Register时会根据Endpoint生成plugin的socket放在
/var/lib/kubelet/device-plugins/
目录下,比如Nvidia GPU Device Plugin对应/var/lib/kubelet/device-plugins/nvidia.sock
。ResourceName, 须按照Extended Resource Naming Scheme格式
vendor-domain/resource
,比如nvidia.com/gpu
DevicePluginOptions, 作为kubelet与device plugin通信时的额外参数传递。
前面提到Device Plugin Interface目前有v1alpha, v1beta1两个版本,每个版本对应的接口如下:
/v1beta1.Registration/Register
/v1beta1.Registration/Register pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:466 var _Registration_serviceDesc = grpc.ServiceDesc{ ServiceName: "v1beta1.Registration", HandlerType: (*RegistrationServer)(nil), Methods: []grpc.MethodDesc{ { MethodName: "Register", Handler: _Registration_Register_Handler, }, }, Streams: []grpc.StreamDesc{}, Metadata: "api.proto", }
/v1beta1.DevicePlugin/ListAndWatch
/v1beta1.DevicePlugin/Allocate
/v1beta1.DevicePlugin/PreStartContainer
/v1beta1.DevicePlugin/GetDevicePluginOptions
pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:665 var _DevicePlugin_serviceDesc = grpc.ServiceDesc{ ServiceName: "v1beta1.DevicePlugin", HandlerType: (*DevicePluginServer)(nil), Methods: []grpc.MethodDesc{ { MethodName: "GetDevicePluginOptions", Handler: _DevicePlugin_GetDevicePluginOptions_Handler, }, { MethodName: "Allocate", Handler: _DevicePlugin_Allocate_Handler, }, { MethodName: "PreStartContainer", Handler: _DevicePlugin_PreStartContainer_Handler, }, }, Streams: []grpc.StreamDesc{ { StreamName: "ListAndWatch", Handler: _DevicePlugin_ListAndWatch_Handler, ServerStreams: true, }, }, Metadata: "api.proto", }
/deviceplugin.Registration/Register
pkg/kubelet/apis/deviceplugin/v1alpha/api.pb.go:374 var _Registration_serviceDesc = grpc.ServiceDesc{ ServiceName: "deviceplugin.Registration", HandlerType: (*RegistrationServer)(nil), Methods: []grpc.MethodDesc{ { MethodName: "Register", Handler: _Registration_Register_Handler, }, }, Streams: []grpc.StreamDesc{}, Metadata: "api.proto", }
/deviceplugin.DevicePlugin/Allocate
/deviceplugin.DevicePlugin/ListAndWatch
pkg/kubelet/apis/deviceplugin/v1alpha/api.pb.go:505 var _DevicePlugin_serviceDesc = grpc.ServiceDesc{ ServiceName: "deviceplugin.DevicePlugin", HandlerType: (*DevicePluginServer)(nil), Methods: []grpc.MethodDesc{ { MethodName: "Allocate", Handler: _DevicePlugin_Allocate_Handler, }, }, Streams: []grpc.StreamDesc{ { StreamName: "ListAndWatch", Handler: _DevicePlugin_ListAndWatch_Handler, ServerStreams: true, }, }, Metadata: "api.proto", }
v1alpha:
v1beta1:
当Device Plugin成功注册后,它将通过ListAndWatch向kubelet发送它管理的device列表,kubelet收到数据后通过API Server更新etcd中对应node的status中。
然后用户就能在Container Spec request中请求对应的device,注意以下限制:
Extended Resource只支持请求整数个device,不支持小数点。
不支持超配,即Resource QoS只能是Guaranteed。
同一块Device不能多个Containers共享。
Device Plugins Workflow
Device Plugins的工作流如下:
初始化:Device Plugin启动后,进行一些插件特定的初始化工作以确定对应的Devices处于Ready状态,对于Nvidia GPU,就是加载NVML Library。
启动gRPC服务:通过
/var/lib/kubelet/device-plugins/${Endpoint}.sock
对外暴露gRPC服务,不同的API Version对应不同的服务接口,前面已经提过,下面是每个接口的描述。ListAndWatch
Allocate
GetDevicePluginOptions
PreStartContainer
pkg/kubelet/apis/deviceplugin/v1beta1/api.proto // DevicePlugin is the service advertised by Device Plugins service DevicePlugin { // GetDevicePluginOptions returns options to be communicated with Device // Manager rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {} // ListAndWatch returns a stream of List of Devices // Whenever a Device state change or a Device disapears, ListAndWatch // returns the new list rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {} // Allocate is called during container creation so that the Device // Plugin can run device specific operations and instruct Kubelet // of the steps to make the Device available in the container rpc Allocate(AllocateRequest) returns (AllocateResponse) {} // PreStartContainer is called, if indicated by Device Plugin during registeration phase, // before each container start. Device plugin can run device specific operations // such as reseting the device before making devices available to the container rpc PreStartContainer(PreStartContainerRequest) returns (PreStartContainerResponse) {} }
ListAndWatch
Allocate
pkg/kubelet/apis/deviceplugin/v1alpha/api.proto // DevicePlugin is the service advertised by Device Plugins service DevicePlugin { // ListAndWatch returns a stream of List of Devices // Whenever a Device state changes or a Device disappears, ListAndWatch // returns the new list rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {} // Allocate is called during container creation so that the Device // Plugin can run device specific operations and instruct Kubelet // of the steps to make the Device available in the container rpc Allocate(AllocateRequest) returns (AllocateResponse) {} }
v1alpha:
v1beta1:
Device Plugin通过
/var/lib/kubelet/device-plugins/kubelet.sock
向kubelet进行注册。注册成功后,Device Plugin就正式进入了Serving模式,提供前面提到的gRPC接口调用服务,下面是v1beta1的每个接口对应的具体分析:
下面是
struct Device
的GPU Sample:struct Device { ID: "GPU-fef8089b-4820-abfc-e83e-94318197576e", State: "Healthy",}
PreStartContainer is expected to be called before each container start if indicated by plugin during registration phase.
PreStartContainer allows kubelet to pass reinitialized devices to containers.
PreStartContainer allows Device Plugin to run device specific operations on the Devices requested.
type PreStartContainerRequest struct { DevicesIDs []string `protobuf:"bytes,1,rep,name=devicesIDs" json:"devicesIDs,omitempty"` } // PreStartContainerResponse will be send by plugin in response to PreStartContainerRequest type PreStartContainerResponse struct { }
Allocate is expected to be called during pod creation since allocation failures for any container would result in pod startup failure.
Allocate allows kubelet to exposes additional artifacts in a pod's environment as directed by the plugin.
Allocate allows Device Plugin to run device specific operations on the Devices requested
type AllocateRequest struct { ContainerRequests []*ContainerAllocateRequest `protobuf:"bytes,1,rep,name=container_requests,json=containerRequests" json:"container_requests,omitempty"` } type ContainerAllocateRequest struct { DevicesIDs []string `protobuf:"bytes,1,rep,name=devicesIDs" json:"devicesIDs,omitempty"` } // AllocateResponse includes the artifacts that needs to be injected into // a container for accessing 'deviceIDs' that were mentioned as part of // 'AllocateRequest'. // Failure Handling: // if Kubelet sends an allocation request for dev1 and dev2. // Allocation on dev1 succeeds but allocation on dev2 fails. // The Device plugin should send a ListAndWatch update and fail the // Allocation request type AllocateResponse struct { ContainerResponses []*ContainerAllocateResponse `protobuf:"bytes,1,rep,name=container_responses,json=containerResponses" json:"container_responses,omitempty"` } type ContainerAllocateResponse struct { // List of environment variable to be set in the container to access one of more devices. Envs map[string]string `protobuf:"bytes,1,rep,name=envs" json:"envs,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"` // Mounts for the container. Mounts []*Mount `protobuf:"bytes,2,rep,name=mounts" json:"mounts,omitempty"` // Devices for the container. Devices []*DeviceSpec `protobuf:"bytes,3,rep,name=devices" json:"devices,omitempty"` // Container annotations to pass to the container runtime Annotations map[string]string `protobuf:"bytes,4,rep,name=annotations" json:"annotations,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"` } // DeviceSpec specifies a host device to mount into a container. type DeviceSpec struct { // Path of the device within the container. ContainerPath string `protobuf:"bytes,1,opt,name=container_path,json=containerPath,proto3" json:"container_path,omitempty"` // Path of the device on the host. HostPath string `protobuf:"bytes,2,opt,name=host_path,json=hostPath,proto3" json:"host_path,omitempty"` // Cgroups permissions of the device, candidates are one or more of // * r - allows container to read from the specified device. // * w - allows container to write to the specified device. // * m - allows container to create device files that do not yet exist. Permissions string `protobuf:"bytes,3,opt,name=permissions,proto3" json:"permissions,omitempty"` }
AllocateRequest就是DeviceID列表。
AllocateResponse包括需要注入到Container里面的Envs、Devices的挂载信息(包括device的cgroup permissions)以及自定义的Annotations。
Allocate:Device Plugin执行device-specific操作,返回
AllocateResponse
给kubelet,kubelet再传给dockerd,由dockerd(调用nvidia-docker)在创建容器时分配device时使用。下面是这个接口的Request和Response的描述。PreStartContainer:
GetDevicePluginOptions: 目前只有
PreStartRequired
这一个field。type DevicePluginOptions struct { // Indicates if PreStartContainer call is required before each container start PreStartRequired bool `protobuf:"varint,1,opt,name=pre_start_required,json=preStartRequired,proto3" json:"pre_start_required,omitempty"`}
ListAndWatch:监控对应Devices的状态变更或者Disappear事件,返回
ListAndWatchResponse
给kubelet, ListAndWatchResponse就是Device列表。type ListAndWatchResponse struct { Devices []*Device `protobuf:"bytes,1,rep,name=devices" json:"devices,omitempty"` } type Device struct { // A unique ID assigned by the device plugin used // to identify devices during the communication // Max length of this field is 63 characters ID string `protobuf:"bytes,1,opt,name=ID,json=iD,proto3" json:"ID,omitempty"` // Health of the device, can be healthy or unhealthy, see constants.go Health string `protobuf:"bytes,2,opt,name=health,proto3" json:"health,omitempty"` }
异常处理
每次kubelet启动(重启)时,都会将/var/lib/kubelet/device-plugins下的所有sockets文件删除。
Device Plugin要负责监测自己的socket被删除,然后进行重新注册,重新生成自己的socket。
当plugin socket被误删,Device Plugin该怎么办?
我们看看Nvidia Device Plugin是怎么处理的,相关的代码如下:
github.com/NVIDIA/k8s-device-plugin/main.go:15func main() { ... log.Println("Starting FS watcher.") watcher, err := newFSWatcher(pluginapi.DevicePluginPath) ... restart := true var devicePlugin *NvidiaDevicePluginL: for { if restart { if devicePlugin != nil { devicePlugin.Stop() } devicePlugin = NewNvidiaDevicePlugin() if err := devicePlugin.Serve(); err != nil { log.Println("Could not contact Kubelet, retrying. Did you enable the device plugin feature gate?") log.Printf("You can check the prerequisites at: https://github.com/NVIDIA/k8s-device-plugin#prerequisites") log.Printf("You can learn how to set the runtime at: https://github.com/NVIDIA/k8s-device-plugin#quick-start") } else { restart = false } } select { case event := <-watcher.Events: if event.Name == pluginapi.KubeletSocket && event.Op&fsnotify.Create == fsnotify.Create { log.Printf("inotify: %s created, restarting.", pluginapi.KubeletSocket) restart = true } case err := <-watcher.Errors: log.Printf("inotify: %s", err) case s := <-sigs: switch s { case syscall.SIGHUP: log.Println("Received SIGHUP, restarting.") restart = true default: log.Printf("Received signal \"%v\", shutting down.", s) devicePlugin.Stop() break L } } }}
通过
fsnotify.Watcher
监控/var/lib/kubelet/device-plugins/
目录。如果
fsnotify.Watcher
的Events Channel收到Createkubelet.sock
事件(说明kubelet发生重启),则会触发Nvidia Device Plugin的重启。Nvidia Device Plugin重启的逻辑是:先检查devicePlugin对象是否为空(说明完成了Nvidia Device Plugin的初始化):
如果不为空,则先停止Nvidia Device Plugin的gRPC Server。
然后调用NewNvidiaDevicePlugin()重建一个新的DevicePlugin实例。
调用Serve()启动gRPC Server,并先kubelet注册自己。
因此,这其中只监控了kubelet.sock
的Create事件,能很好处理kubelet重启的问题,但是并没有监控自己的socket是否被删除的事件。所以,如果Nvidia Device Plugin的socket被误删了,那么将会导致kubelet无法与该节点的Nvidia Device Plugin进行socket通信,则意味着Device Plugin的gRPC接口都无法调通:
无法ListAndWatch该节点上的Device列表、健康状态,Devices信息无法同步。
无法Allocate Device,导致容器创建失败。
因此,建议加上对自己device plugin socket的删除事件的监控,一旦监控到删除,则应该触发restart。
select { case event := <-watcher.Events: if event.Name == pluginapi.KubeletSocket && event.Op&fsnotify.Create == fsnotify.Create { log.Printf("inotify: %s created, restarting.", pluginapi.KubeletSocket) restart = true } // 增加对nvidia.sock的删除事件监控 if event.Name == serverSocket && event.Op&fsnotify.Delete == fsnotify.Delete { log.Printf("inotify: %s deleted, restarting.", serverSocket) restart = true } ...}
Extended Resources
Device Plugin是通过Extended Resources来expose宿主机上的资源的,Kubernetes内置的Resources都是隶属于
kubernetes.io
domain的,因此Extended Resource不允许advertise在kubernetes.io
domain下。Node-level Extended Resource
注意:~1 is the encoding for the character / in the patch path。
给API Server提交PATCH请求,给node的status.capacity添加新的资源名称和数量;
kubelet通过定期更新node status.allocatable到API Server,这其中就包括事先给node打PATCH新加的资源。之后请求了新加资源的Pod就会被scheduler根据node status.allocatable进行FitResources Predicate甩选node。
注意:kubelet通过--node-status-update-frequency配置定期更新间隔,默认10s。因此,当你提交完PATCH后,最坏情况下可能要等待10s左右的时间才能被scheduler发现并使用该资源。
Device plugin管理的资源
其他资源
curl --header "Content-Type: application/json-patch+json" \--request PATCH \--data '[{"op": "add", "path": "/status/capacity/example.com~1foo", "value": "5"}]' \http://k8s-master:8080/api/v1/nodes/k8s-node-1/status
Cluster-level Extended Resources
通常集群级的Extended Resources是给scheduler extender使用的,用来做Resources的配额管理。
当Pod请求的resource中包含该extended resources时,default scheduler才会将这个Pod发给对应的scheduler extender进行二次调度。
ignoredByScheduler field如果设置为true,则default scheduler将不会对该资源进行PodFitsResources预选检查,通常都会设置为true,因为Cluster-level不是跟node相关的,不适合进行PodFitResources对Node资源进行检查。
{ "kind": "Policy", "apiVersion": "v1", "extenders": [ { "urlPrefix":"
", "bindVerb": "bind", "ManagedResources": [ { "name": "example.com/foo", "ignoredByScheduler": true } ] } ]} API Server限制了Extender Resources只能为整数,比如2,2000m,2Ki,不能为1.5, 1500m。
Contaienr resources filed中只配置的Extended Resources必须是Guaranteed QoS。即要么只显示设置了limits(此时requests默认同limits),要么requests和limit显示配置一样。
Scheduler GPU
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
这里我们只讨论Kubernetes 1.10中如何调度使用GPU。
在Kubernetes 1.8之前,官方还是建议enable alpha gate feature: Accelerators,通过请求resource alpha.kubernetes.io/nvidia-gpu
来使用gpu,并且要求容器挂载Host上的nvidia lib和driver到容器内。这部分内容,请参考我的博文:如何在Kubernetes集群中利用GPU进行AI训练。
从Kubernetes 1.8开始,官方推荐使用Device Plugins方式来使用GPU。
需要在Node上pre-install NVIDIA Driver,并建议通过Daemonset部署NVIDIA Device Plugin,完成后Kubernetes才能发现nvidia.com/gpu。
因为device plugin通过extended resources来expose gpu resource的,所以在container请求gpu资源的时候要注意resource QoS为Guaranteed。
Containers目前仍然不支持共享同一块gpu卡。每个Container可以请求多块gpu卡,但是不支持gpu fraction。
使用官方nvidia driver除了以上注意事项之外,还需注意:
Node上需要pre-install nvidia docker 2.0,并使用nvidia docker替换runC作为docker的默认runtime。
在CentOS上,参考如下方式安装nvidia docker 2.0 :
# Add the package repositories distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | \ sudo tee /etc/yum.repos.d/nvidia-docker.repo # Install nvidia-docker2 and reload the Docker daemon configuration sudo yum install -y nvidia-docker2 sudo pkill -SIGHUP dockerd # Test nvidia-smi with the latest official CUDA image docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
以上工作都完成后,Container就可以像请求buit-in resources一样请求gpu资源了:
apiVersion: v1 kind: Pod metadata: name: cuda-vector-add spec: restartPolicy: OnFailure containers: - name: cuda-vector-add # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile image: "k8s.gcr.io/cuda-vector-add:v0.1" resources: limits: nvidia.com/gpu: 2 # requesting 2 GPU
使用NodeSelector区分不同型号的GPU服务器
如果你的集群中存在不同型号的GPU服务器,比如nvidia tesla k80, p100, v100等,而且不同的训练任务需要匹配不同的GPU型号,那么先给Node打上对应的Label:
# Label your nodes with the accelerator type they have.kubectl label nodesaccelerator=nvidia-tesla-k80kubectl label nodes accelerator=nvidia-tesla-p100
Pod中通过NodeSelector来指定对应的GPU型号:
apiVersion: v1kind: Podmetadata: name: cuda-vector-addspec: restartPolicy: OnFailure containers: - name: cuda-vector-add # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile image: "k8s.gcr.io/cuda-vector-add:v0.1" resources: limits: nvidia.com/gpu: 1 nodeSelector: accelerator: nvidia-tesla-p100 # or nvidia-tesla-k80 etc.
思考:其实仅仅使用NodeSelector是不能很好解决这个问题的,这要求所有的pod都要加上对应的NodeSelector。对于V100这样的昂贵稀有的GPU卡,通常还要求不能让别的训练任务使用,只给某些算法训练使用,这个时候我们可以通过给Node打上对应的Taint,给需要的Pod的打上对应Toleration就能完美满足需求了。
Deploy
建议通过Daemonset来部署Device Plugin,方便实现failover。
Device Plugin Pod必须具有privileged特权才能访问/var/lib/kubelet/device-plugins
Device Plugin Pod需将宿主机的hostpath /var/lib/kubelet/device-plugins挂载到容器内相同的目录。
kubernetes 1.8
apiVersion: extensions/v1beta1kind: DaemonSetmetadata: name: nvidia-device-plugin-daemonsetspec: template: metadata: labels: name: nvidia-device-plugin-ds spec: containers: - image: nvidia/k8s-device-plugin:1.8 name: nvidia-device-plugin-ctr securityContext: privileged: true volumeMounts: - name: device-plugin mountPath: /var/lib/kubelet/device-plugins volumes: - name: device-plugin hostPath: path: /var/lib/kubelet/device-plugins
kubernetes 1.10
apiVersion: extensions/v1beta1kind: DaemonSetmetadata: name: nvidia-device-plugin-daemonset namespace: kube-systemspec: template: metadata: # Mark this pod as a critical add-on; when enabled, the critical add-on scheduler # reserves resources for critical add-on pods so that they can be rescheduled after # a failure. This annotation works in tandem with the toleration below. annotations: scheduler.alpha.kubernetes.io/critical-pod: "" labels: name: nvidia-device-plugin-ds spec: tolerations: # Allow this pod to be rescheduled while the node is in "critical add-ons only" mode. # This, along with the annotation above marks this pod as a critical add-on. - key: CriticalAddonsOnly operator: Exists containers: - image: nvidia/k8s-device-plugin:1.10 name: nvidia-device-plugin-ctr securityContext: privileged: true volumeMounts: - name: device-plugin mountPath: /var/lib/kubelet/device-plugins volumes: - name: device-plugin hostPath: path: /var/lib/kubelet/device-plugins
关于Kubernetes对critical pod的处理,越来越有意思了,找个时间单独写个博客再详细聊这个。
Device Plugins原理图
上述内容就是Kubernetes如何通过Device Plugins来使用NVIDIA GPU,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注行业资讯频道。