PostgreSQL中不同数据类型对查询性能的影响有哪些
发表于:2024-11-19 作者:千家信息网编辑
千家信息网最后更新 2024年11月19日,本篇内容主要讲解"PostgreSQL中不同数据类型对查询性能的影响有哪些",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"PostgreSQL中不同数据类型
千家信息网最后更新 2024年11月19日PostgreSQL中不同数据类型对查询性能的影响有哪些
本篇内容主要讲解"PostgreSQL中不同数据类型对查询性能的影响有哪些",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"PostgreSQL中不同数据类型对查询性能的影响有哪些"吧!
容量
数据列占用空间大小
[local]:5432 pg12@testdb=# SELECT pg_column_size(SMALLINT '1'),pg_column_size(INT4 '1'), pg_column_size(NUMERIC(6,0) '1'),pg_column_size(FLOAT '1'); pg_column_size | pg_column_size | pg_column_size | pg_column_size ----------------+----------------+----------------+---------------- 2 | 4 | 8 | 8
创建数据表,0和1的数据值各插入100w行,查看数据表的占用空间大小。
numeric
[local]:5432 pg12@testdb=# create table t_numeric(id numeric);CREATE TABLE[local]:5432 pg12@testdb=# [local]:5432 pg12@testdb=# insert into t_numeric select 0 from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# insert into t_numeric select 1 from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# select pg_size_pretty(pg_relation_size('t_numeric')); pg_size_pretty ---------------- 69 MB(1 row)
float
[local]:5432 pg12@testdb=# create table t_float(id int);CREATE TABLE[local]:5432 pg12@testdb=# [local]:5432 pg12@testdb=# insert into t_float select 0 from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# insert into t_float select 1 from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# [local]:5432 pg12@testdb=# select pg_size_pretty(pg_relation_size('t_float')); pg_size_pretty ---------------- 69 MB(1 row)[local]:5432 pg12@testdb=#
int
[local]:5432 pg12@testdb=# create table t_int(id int);CREATE TABLE[local]:5432 pg12@testdb=# [local]:5432 pg12@testdb=# insert into t_int select 0 from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# insert into t_int select 1 from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# select pg_size_pretty(pg_relation_size('t_int')); pg_size_pretty ---------------- 69 MB(1 row)
smallint
[local]:5432 pg12@testdb=# create table t_smallint(id smallint);CREATE TABLE[local]:5432 pg12@testdb=# [local]:5432 pg12@testdb=# insert into t_smallint select 0 from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# insert into t_smallint select 1 from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# [local]:5432 pg12@testdb=# select pg_size_pretty(pg_relation_size('t_smallint')); pg_size_pretty ---------------- 69 MB(1 row)
boolean
[local]:5432 pg12@testdb=# create table t_bool(id boolean);CREATE TABLE[local]:5432 pg12@testdb=# insert into t_bool select 0::boolean from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# insert into t_bool select 1::boolean from generate_series(1,1000000);INSERT 0 1000000[local]:5432 pg12@testdb=# [local]:5432 pg12@testdb=# select pg_size_pretty(pg_relation_size('t_bool')); pg_size_pretty ---------------- 69 MB(1 row)
可以看到,四种数据类型占用的空间都是69 MB。
查询性能
不加条件,全表扫描
-- 禁用并行[local]:5432 pg12@testdb=# SET max_parallel_workers_per_gather = 0;SET[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_numeric; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=33850.00..33850.01 rows=1 width=8) (actual time=478.196..478.196 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_numeric (cost=0.00..28850.00 rows=2000000 width=0) (actual time=0.053..255.949 rows=2000000 loops=1) Output: id Buffers: shared hit=8850 Planning Time: 0.716 ms Execution Time: 478.280 ms(8 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_float; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=33850.00..33850.01 rows=1 width=8) (actual time=421.919..421.919 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_float (cost=0.00..28850.00 rows=2000000 width=0) (actual time=0.010..222.624 rows=2000000 loops=1) Output: id Buffers: shared hit=8850 Planning Time: 0.231 ms Execution Time: 421.948 ms(8 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_int; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------ Aggregate (cost=33850.00..33850.01 rows=1 width=8) (actual time=440.328..440.328 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_int (cost=0.00..28850.00 rows=2000000 width=0) (actual time=0.011..236.078 rows=2000000 loops=1) Output: id Buffers: shared hit=8850 Planning Time: 0.208 ms Execution Time: 440.359 ms(8 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_smallint; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=33850.00..33850.01 rows=1 width=8) (actual time=439.007..439.007 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_smallint (cost=0.00..28850.00 rows=2000000 width=0) (actual time=0.043..232.069 rows=2000000 loops=1) Output: id Buffers: shared hit=8850 Planning Time: 0.553 ms Execution Time: 439.081 ms(8 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_bool; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=33850.00..33850.01 rows=1 width=8) (actual time=430.800..430.800 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_bool (cost=0.00..28850.00 rows=2000000 width=0) (actual time=0.010..230.333 rows=2000000 loops=1) Output: id Buffers: shared hit=8850 Planning Time: 0.224 ms Execution Time: 430.831 ms(8 rows)[local]:5432 pg12@testdb=#
不带条件全表扫描,时间相差不大,执行时长最大的是numeric类型。
添加查询条件,全表扫描
[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_numeric where id = '0'::numeric;lain (analyze,verbose,buffers) select count(*) from t_bool where id = 0::boolean; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=36358.67..36358.68 rows=1 width=8) (actual time=723.356..723.357 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_numeric (cost=0.00..33850.00 rows=1003467 width=0) (actual time=0.057..610.907 rows=1000000 loops=1) Output: id Filter: (t_numeric.id = '0'::numeric) Rows Removed by Filter: 1000000 Buffers: shared hit=8850 Planning Time: 1.901 ms Execution Time: 723.449 ms(10 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_float where id = '0'::numeric; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------ Aggregate (cost=38875.00..38875.01 rows=1 width=8) (actual time=827.686..827.687 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_float (cost=0.00..38850.00 rows=10000 width=0) (actual time=0.015..725.737 rows=1000000 loops=1) Output: id Filter: ((t_float.id)::numeric = '0'::numeric) Rows Removed by Filter: 1000000 Buffers: shared hit=8850 Planning Time: 0.234 ms Execution Time: 827.720 ms(10 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_int where id = 0; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=36329.50..36329.51 rows=1 width=8) (actual time=434.067..434.067 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_int (cost=0.00..33850.00 rows=991800 width=0) (actual time=0.014..333.883 rows=1000000 loops=1) Output: id Filter: (t_int.id = 0) Rows Removed by Filter: 1000000 Buffers: shared hit=8850 Planning Time: 0.295 ms Execution Time: 434.101 ms(10 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_smallint where id = 0; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=36354.50..36354.51 rows=1 width=8) (actual time=486.466..486.466 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_smallint (cost=0.00..33850.00 rows=1001800 width=0) (actual time=0.053..368.184 rows=1000000 loops=1) Output: id Filter: (t_smallint.id = 0) Rows Removed by Filter: 1000000 Buffers: shared hit=8850 Planning Time: 1.396 ms Execution Time: 486.554 ms(10 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_bool where id = 0::boolean; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=31356.67..31356.68 rows=1 width=8) (actual time=416.510..416.510 rows=1 loops=1) Output: count(*) Buffers: shared hit=8850 -> Seq Scan on public.t_bool (cost=0.00..28850.00 rows=1002667 width=0) (actual time=0.014..316.188 rows=1000000 loops=1) Output: id Filter: (NOT t_bool.id) Rows Removed by Filter: 1000000 Buffers: shared hit=8850 Planning Time: 0.261 ms Execution Time: 416.551 ms(10 rows)[local]:5432 pg12@testdb=#
存在查询条件的情况下,由于解析表达式的代价不同(bool < int < numeric < float),因此时间相差较大,时长最大的是float类型,时间接近bool类型的2倍。
创建索引,全索引扫描
禁用全表扫描,使用全索引扫描
[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_numeric where id = '0'::numeric; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=35541.77..35541.78 rows=1 width=8) (actual time=594.984..594.984 rows=1 loops=1) Output: count(*) Buffers: shared hit=7160 -> Index Only Scan using idx_t_numeric_id on public.t_numeric (cost=0.43..33033.10 rows=1003467 width=0) (actual time=0.269..482.525 rows=1000000 loops=1) Output: id Index Cond: (t_numeric.id = '0'::numeric) Heap Fetches: 1000000 Buffers: shared hit=7160 Planning Time: 1.392 ms Execution Time: 595.253 ms(10 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_float where id = '0'::numeric; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=70854.43..70854.44 rows=1 width=8) (actual time=1337.093..1337.094 rows=1 loops=1) Output: count(*) Buffers: shared hit=14317 -> Index Only Scan using idx_t_float_id on public.t_float (cost=0.43..70829.43 rows=10000 width=0) (actual time=0.037..1233.730 rows=1000000 loops=1) Output: id Filter: ((t_float.id)::numeric = '0'::numeric) Rows Removed by Filter: 1000000 Heap Fetches: 2000000 Buffers: shared hit=14317 Planning Time: 0.293 ms Execution Time: 1337.168 ms(11 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_int where id = 0; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=35128.43..35128.44 rows=1 width=8) (actual time=526.942..526.943 rows=1 loops=1) Output: count(*) Buffers: shared hit=7160 -> Index Only Scan using idx_t_int_id on public.t_int (cost=0.43..32648.93 rows=991800 width=0) (actual time=0.035..414.797 rows=1000000 loops=1) Output: id Index Cond: (t_int.id = 0) Heap Fetches: 1000000 Buffers: shared hit=7160 Planning Time: 0.245 ms Execution Time: 526.979 ms(10 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_smallint where id = 0; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Aggregate (cost=35480.43..35480.44 rows=1 width=8) (actual time=551.394..551.394 rows=1 loops=1) Output: count(*) Buffers: shared hit=4428 read=2735 -> Index Only Scan using idx_t_smallint_id on public.t_smallint (cost=0.43..32975.93 rows=1001800 width=0) (actual time=0.459..438.992 rows=1000000 loops=1) Output: id Index Cond: (t_smallint.id = 0) Heap Fetches: 1000000 Buffers: shared hit=4428 read=2735 Planning Time: 1.889 ms Execution Time: 551.499 ms(10 rows)[local]:5432 pg12@testdb=# explain (analyze,verbose,buffers) select count(*) from t_bool where id = 0::boolean; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=35513.77..35513.78 rows=1 width=8) (actual time=497.886..497.886 rows=1 loops=1) Output: count(*) Buffers: shared hit=7160 -> Index Only Scan using idx_t_bool_id on public.t_bool (cost=0.43..33007.10 rows=1002667 width=0) (actual time=0.035..393.653 rows=1000000 loops=1) Output: id Index Cond: (t_bool.id = false) Heap Fetches: 1000000 Buffers: shared hit=7160 Planning Time: 0.250 ms Execution Time: 497.922 ms(10 rows)[local]:5432 pg12@testdb=#
走全索引扫描,执行时长最长的仍是float类型,其他三种类型则相差不大,numeric的性能相较全表扫描有明显提升(595ms vs 723ms)。
压力测试
使用pgbench进行压力测试,numeric/float/int三种类型,各插入100w数据
drop table t_big_numeric;create table t_big_numeric(id numeric);insert into t_big_numeric select 0 from generate_series(1,1000000);drop table t_big_float;create table t_big_float(id int);insert into t_big_float select 0 from generate_series(1,1000000);drop table t_big_int;create table t_big_int(id int);insert into t_big_int select 0 from generate_series(1,1000000);
测试结果
[pg12@localhost test]$ pgbench -C -f ./select_numeric.sql --time=120 --client=8 --jobs=2 -d testdb...transaction type: ./select_numeric.sqlscaling factor: 1query mode: simplenumber of clients: 8number of threads: 2duration: 120 snumber of transactions actually processed: 1254latency average = 768.659 mstps = 10.407739 (including connections establishing)tps = 10.906626 (excluding connections establishing)[pg12@localhost test]$ [pg12@localhost test]$ pgbench -C -f ./select_float.sql --time=120 --client=8 --jobs=2 -d testdb...transaction type: ./select_float.sqlscaling factor: 1query mode: simplenumber of clients: 8number of threads: 2duration: 120 snumber of transactions actually processed: 2167latency average = 444.006 mstps = 18.017778 (including connections establishing)tps = 19.461350 (excluding connections establishing)[pg12@localhost test]$ cat select_float.sql \set id random(1,1000000)select * from t_big_float where id = :id; [pg12@localhost test]$ [pg12@localhost test]$ pgbench -C -f ./select_int.sql --time=120 --client=8 --jobs=2 -d testdb...transaction type: ./select_int.sqlscaling factor: 1query mode: simplenumber of clients: 8number of threads: 2duration: 120 snumber of transactions actually processed: 2184latency average = 440.271 mstps = 18.170626 (including connections establishing)tps = 19.658996 (excluding connections establishing)[pg12@localhost test]$
到此,相信大家对"PostgreSQL中不同数据类型对查询性能的影响有哪些"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
类型
数据
查询
性能
不同
条件
索引
影响
时长
时间
空间
测试
最大
不大
内容
压力
大小
数据表
学习
实用
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
向数据库中添加数据 vb
镇江专业联想服务器厂家直供
银行科技 互联网转型
ai无法识别的数据库
数据库用户信息加密
超凡先锋服务器在哪里下载
北京工业软件开发定做价格
网络技术优劣
lol连接服务器异常
数据库是否主键在哪里
c sql数据库备份
税务问软件开发成本
服务器电源管理器有用吗
数据库group错误
云服务器吧
rds数据库导出
太原网络技术公司
魔兽世界新服务器塞雷布拉斯状况
数据库应用技术考试题库
方丹如何自己弄服务器
小米怎么判断网络安全性
ibmm2服务器怎么建立局域网
网络安全政治安全的重要性
学点什么网络技术好呢
和平精英主播服务器叫什么
绯石之心服务器第一要多少钱
es文件管理器 服务器
链接数据库怎么防止乱码
向数据库写入数据失败
武汉中国长城软件开发招聘