Hive基础sql语法(DDL)
前言:
- 经过前面的学习 我们了解到Hive可以使用关系型数据库来存储元数据,而且Hive提供了比较完整的SQL功能 ,这篇文章主要介绍Hive基本的sql语法。
首先了解下Hive的数据存储结构,抽象图如下:
- 1.Database:Hive中包含了多个数据库,默认的数据库为default,对应于HDFS目录是/user/hadoop/hive/warehouse,可以通过hive.metastore.warehouse.dir参数进行配置(hive-site.xml中配置)
- 2.Table: Hive 中的表又分为内部表和外部表 ,Hive 中的每张表对应于HDFS上的一个目录,HDFS目录为:/user/hadoop/hive/warehouse/[databasename.db]/table
- 3.Partition:分区,每张表中可以加入一个分区或者多个,方便查询,提高效率;并且HDFS上会有对应的分区目录:
/user/hadoop/hive/warehouse/[databasename.db]/table - 4.Bucket(桶):暂且不讲
DDL操作(Data Definition Language)
参考官方文档: DDL文档
HiveQL DDL statements are documented here, including:
- CREATE DATABASE/SCHEMA, TABLE, VIEW, FUNCTION, INDEX
- DROP DATABASE/SCHEMA, TABLE, VIEW, INDEX
- TRUNCATE TABLE
- ALTER DATABASE/SCHEMA, TABLE, VIEW
- MSCK REPAIR TABLE (or ALTER TABLE RECOVER PARTITIONS)
- SHOW DATABASES/SCHEMAS, TABLES, TBLPROPERTIES, VIEWS, PARTITIONS, FUNCTIONS, INDEX[ES], COLUMNS, CREATE TABLE
- DESCRIBE DATABASE/SCHEMA, table_name, view_name
一.基于数据库的DDL操作
1.创建数据库(Create Database)
- 下面是官网上为我们列出的语法:
Create DatabaseCREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name[COMMENT database_comment][LOCATION hdfs_path][WITH DBPROPERTIES (property_name=property_value, ...)];
IF NOT EXISTS:加上这句话代表判断数据库是否存在,不存在就会创建,存在就不会创建(生产环境建议使用)。
COMMENT:数据库的描述
LOCATION:创建数据库的地址,不加默认在/user/hive/warehouse/路径下
WITH DBPROPERTIES:数据库的属性
hive> CREATE DATABASE hive1;OKhive> CREATE DATABASE IF NOT EXISTS hive2 > COMMENT "this is ruoze database" > WITH DBPROPERTIES ("creator"="ruoze", "date"="2018-08-08");OKhive> CREATE DATABASE hive3 LOCATION '/db_hive3';OKhive> show databases;OKdefaulthive1hive2hive3# 在HDFS中查看数据库文件夹[hadoop@hadoop000 ~]$ hadoop fs -ls /user/hive/warehouseFound 2 itemsdrwxr-xr-x - hadoop supergroup 0 2018-06-16 15:26 /user/hive/warehouse/hive1.dbdrwxr-xr-x - hadoop supergroup 0 2018-06-16 15:28 /user/hive/warehouse/hive2.db[hadoop@hadoop000 ~]$ hadoop fs -ls /Found 3 itemsdrwxr-xr-x - hadoop supergroup 0 2018-06-16 15:29 /db_hive3drwx-wx-wx - hadoop supergroup 0 2018-06-03 15:57 /tmpdrwxr-xr-x - hadoop supergroup 0 2018-06-03 16:43 /user# 在RDBMS中查看数据库相关信息mysql> select * from hive_meta.dbs\G;*************************** 1. row *************************** DB_ID: 1 DESC: Default Hive databaseDB_LOCATION_URI: hdfs://hadoop000:9000/user/hive/warehouse NAME: default OWNER_NAME: public OWNER_TYPE: ROLE*************************** 2. row *************************** DB_ID: 6 DESC: NULLDB_LOCATION_URI: hdfs://hadoop000:9000/user/hive/warehouse/hive1.db NAME: hive1 OWNER_NAME: hadoop OWNER_TYPE: USER*************************** 3. row *************************** DB_ID: 7 DESC: this is ruoze databaseDB_LOCATION_URI: hdfs://hadoop000:9000/user/hive/warehouse/hive2.db NAME: hive2 OWNER_NAME: hadoop OWNER_TYPE: USER*************************** 4. row *************************** DB_ID: 8 DESC: NULLDB_LOCATION_URI: hdfs://hadoop000:9000/db_hive3 NAME: hive3 OWNER_NAME: hadoop OWNER_TYPE: USER4 rows in set (0.00 sec)
2.查询数据库(Show Databases)
- 下面是官网上为我们列出的语法:
SHOW (DATABASES|SCHEMAS) [LIKE 'identifier_with_wildcards'];
hive> show databases;OKdefaulthive1hive2hive3Time taken: 0.047 seconds, Fetched: 4 row(s)hive> show databases like 'hive1';OKhive1Time taken: 0.035 seconds, Fetched: 1 row(s)hive> show databases like 'hive*';OKhive1hive2hive3Time taken: 0.037 seconds, Fetched: 3 row(s)
3.查询数据库信息(Describe Database)
- 下面是官网上为我们列出的语法:
DESCRIBE DATABASE [EXTENDED] db_name;--describe 可简写为desc
DESCRIBE DATABASE db_name:查看数据库的描述信息和文件目录位置路径信息;
EXTENDED:加上数据库键值对的属性信息。
hive> desc database hive1;OKhive1 hdfs://192.168.6.217:9000/user/hive/warehouse/hive1.db hadoop USERTime taken: 0.039 seconds, Fetched: 1 row(s)hive> desc database hive2;OKhive2 this is ruoze database hdfs://192.168.6.217:9000/user/hive/warehouse/hive2.db hadoop USERTime taken: 0.041 seconds, Fetched: 1 row(s)hive> desc database hive3;OKhive3 hdfs://192.168.6.217:9000/db_hive3 hadoop USERTime taken: 0.046 seconds, Fetched: 1 row(s)hive> desc database extended hive2;OKhive2 this is ruoze database hdfs://192.168.6.217:9000/user/hive/warehouse/hive2.db hadoop USER {date=2018-08-08, creator=ruoze}Time taken: 0.031 seconds, Fetched: 1 row(s)
4.删除数据库(Drop Database)
- 下面是官网上为我们列出的语法:
DROP (DATABASE|SCHEMA) [IF EXISTS] database_name [RESTRICT|CASCADE];
RESTRICT:默认是restrict,如果该数据库还有表存在则报错;
CASCADE:级联删除数据库(当数据库还有表时,级联删除表后再删除数据库) --生产尽量不用。
hive> drop database test;OKTime taken: 0.094 seconds
5.修改数据库信息(Alter Database)
- 下面是官网上为我们列出的语法:
ALTER (DATABASE|SCHEMA) database_name SET DBPROPERTIES (property_name=property_value, ...); -- (Note: SCHEMA added in Hive 0.14.0)ALTER (DATABASE|SCHEMA) database_name SET OWNER [USER|ROLE] user_or_role; -- (Note: Hive 0.13.0 and later; SCHEMA added in Hive 0.14.0)ALTER (DATABASE|SCHEMA) database_name SET LOCATION hdfs_path; -- (Note: Hive 2.2.1, 2.4.0 and later)
(Note:表示对于版本进行的修改)
hive> alter database hive2 set dbproperties ("update"="jepson");OKTime taken: 0.094 secondshive> alter database hive2 set owner user hive;OKTime taken: 0.072 seconds# 修改前hive> desc database extended hive2;OKhive2 this is ruoze database hdfs://192.168.6.217:9000/user/hive/warehouse/hive2.db hadoop USER {date=2018-08-08, creator=ruoze}Time taken: 0.031 seconds, Fetched: 1 row(s)# 修改后hive> desc database extended hive2;OKhive2 this is ruoze database hdfs://192.168.6.217:9000/user/hive/warehouse/hive2.db hive USER {update=jepson, date=2018-08-08, creator=ruoze}Time taken: 0.034 seconds, Fetched: 1 row(s)
6.切换数据库(Use Database)
- 下面是官网上为我们列出的语法:
USE database_name;
hive> use hive1;OKTime taken: 0.044 secondshive> use default;OKTime taken: 0.047 seconds
二.基于表的DDL操作
1.创建表(Create Table)
- 下面是官网上为我们列出的语法:
CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name -- (Note: TEMPORARY available in Hive 0.14.0 and later) [(col_name data_type [COMMENT col_comment], ... [constraint_specification])] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [SKEWED BY (col_name, col_name, ...) -- (Note: Available in Hive 0.10.0 and later)] ON ((col_value, col_value, ...), (col_value, col_value, ...), ...) [STORED AS DIRECTORIES] [ [ROW FORMAT row_format] [STORED AS file_format] | STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)] -- (Note: Available in Hive 0.6.0 and later) ] [LOCATION hdfs_path] [TBLPROPERTIES (property_name=property_value, ...)] -- (Note: Available in Hive 0.6.0 and later) [AS select_statement]; -- (Note: Available in Hive 0.5.0 and later; not supported for external tables)
1.1.TEMPORARY(临时表)- Hive从0.14.0开始提供创建临时表的功能,表只对当前session有效,session退出后,表自动删除。
语法:
CREATE TEMPORARY TABLE ...
注意点:
- 如果创建的临时表表名已存在,那么当前session引用到该表名时实际用的是临时表,只有drop或rename临时表名才能使用原始表;
- 临时表限制:不支持分区字段和创建索引。
hive> use default;OKTime taken: 0.047 secondshive> CREATE TEMPORARY TABLE temporary_table ( > id int, > name string);OKTime taken: 0.242 secondshive> show tables;OKtemporary_tableTime taken: 0.044 seconds, Fetched: 1 row(s)# 退出重新进hive> use default;OKTime taken: 1.054 secondshive> show tables;OKTime taken: 0.559 seconds
1.2.Managed and External Tables(内部表和外部表)- Hive上有两种类型的表,一种是Managed Table(默认的),另一种是External Table(加上EXTERNAL关键字)。它俩的主要区别在于:当我们drop表时,Managed Table会同时删去data(存储在HDFS上)和meta data(存储在MySQL),而External Table只会删meta data。
hive> use default;OKTime taken: 1.054 secondshive> show tables;OKTime taken: 0.559 seconds# 创建内部表和外部表hive> create table managed_table( > id int, > name string > );OKTime taken: 0.677 secondshive> create external table external_table( > id int, > name string > );OKTime taken: 0.146 secondshive> show tables;OKexternal_tablemanaged_tableTime taken: 0.05 seconds, Fetched: 2 row(s)# HDFS中查看[hadoop@hadoop000 ~]$ hadoop fs -ls /user/hive/warehouseFound 4 itemsdrwxr-xr-x - hadoop supergroup 0 2018-06-16 16:40 /user/hive/warehouse/external_tabledrwxr-xr-x - hadoop supergroup 0 2018-06-16 15:26 /user/hive/warehouse/hive1.dbdrwxr-xr-x - hadoop supergroup 0 2018-06-16 15:28 /user/hive/warehouse/hive2.dbdrwxr-xr-x - hadoop supergroup 0 2018-06-16 16:39 /user/hive/warehouse/managed_table# MySQL中查看mysql> select * from hive_meta.tbls\G;*************************** 1. row *************************** TBL_ID: 11 CREATE_TIME: 1529138399 DB_ID: 1 LAST_ACCESS_TIME: 0 OWNER: hadoop RETENTION: 0 SD_ID: 11 TBL_NAME: managed_table TBL_TYPE: MANAGED_TABLEVIEW_EXPANDED_TEXT: NULLVIEW_ORIGINAL_TEXT: NULL*************************** 2. row *************************** TBL_ID: 12 CREATE_TIME: 1529138409 DB_ID: 1 LAST_ACCESS_TIME: 0 OWNER: hadoop RETENTION: 0 SD_ID: 12 TBL_NAME: external_table TBL_TYPE: EXTERNAL_TABLEVIEW_EXPANDED_TEXT: NULLVIEW_ORIGINAL_TEXT: NULL2 rows in set (0.00 sec)# 删除内部表和外部表hive> drop table managed_table;OKTime taken: 1.143 secondshive> drop table external_table;OKTime taken: 0.265 seconds# 再次查看[hadoop@hadoop000 ~]$ hadoop fs -ls /user/hive/warehouseFound 3 itemsdrwxr-xr-x - hadoop supergroup 0 2018-06-16 16:40 /user/hive/warehouse/external_tabledrwxr-xr-x - hadoop supergroup 0 2018-06-16 15:26 /user/hive/warehouse/hive1.dbdrwxr-xr-x - hadoop supergroup 0 2018-06-16 15:28 /user/hive/warehouse/hive2.dbmysql> select * from hive_meta.tbls\G;Empty set (0.00 sec)ERROR: No query specified
1.3.COMMENT,ROW FORMAT等其他建表参数COMMENT :注释 可以给字段和表加注释
先看看官网对于ROW FORMAT的描述
: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char][MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char][NULL DEFINED AS char] -- (Note: Available in Hive 0.13 and later) | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
先看看官网给我们的解释:用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。
那么问题又来了上面这句话又是什么意思呢?
让我们来一起看看到底是神马东东:
DELIMITED:分隔符(可以自定义分隔符);
FIELDS TERMINATED BY char:每个字段之间使用的分割;
例:-FIELDS TERMINATED BY '\n' 字段之间的分隔符为\n;
COLLECTION ITEMS TERMINATED BY char:集合中元素与元素(array)之间使用的分隔符(collection单例集合的跟接口);
MAP KEYS TERMINATED BY char:字段是K-V形式指定的分隔符;
LINES TERMINATED BY char:每条数据之间由换行符分割(默认[ \n ])。- 一般情况下LINES TERMINATED BY char我们就使用默认的换行符\n,只需要指定FIELDS TERMINATED BY char。
hive> CREATE TABLE hive_test > (id int comment 'this is id', name string comment 'this is name' ) > comment 'this is hive_test' > ROW FORMAT DELIMITED > FIELDS TERMINATED BY '\t' ;OKTime taken: 0.174 seconds#为了后面的测试我们创建一张emp表 并导入一些数据hive> create table emp > (empno int, ename string, job string, mgr int, hiredate string, salary double, comm double, deptno int) > ROW FORMAT DELIMITED > FIELDS TERMINATED BY '\t' ;OKTime taken: 0.651 secondshive> LOAD DATA LOCAL INPATH '/home/hadoop/emp.txt' OVERWRITE INTO TABLE emp; Loading data to table default.empTable default.emp stats: [numFiles=1, numRows=0, totalSize=886, rawDataSize=0]OKTime taken: 1.848 seconds
1.4.Create Table As Select (CTAS)- 创建表(拷贝表结构及数据,并且会运行MapReduce作业)
# 复制整张表hive> create table emp2 as select * from emp;Query ID = hadoop_20180616171313_fbc318e8-bc70-4b63-84fa-3acd94e4ec3eTotal jobs = 3...OKTime taken: 23.279 secondshive> select * from emp2;OK7369 SMITH CLERK 7902 1980-12-17 800.0 NULL 207499 ALLEN SALESMAN 7698 1981-2-20 1600.0 300.0 307521 WARD SALESMAN 7698 1981-2-22 1250.0 500.0 307566 JONES MANAGER 7839 1981-4-2 2975.0 NULL 207654 MARTIN SALESMAN 7698 1981-9-28 1250.0 1400.0 307698 BLAKE MANAGER 7839 1981-5-1 2850.0 NULL 307782 CLARK MANAGER 7839 1981-6-9 2450.0 NULL 107788 SCOTT ANALYST 7566 1987-4-19 3000.0 NULL 207839 KING PRESIDENT NULL 1981-11-17 5000.0 NULL 107844 TURNER SALESMAN 7698 1981-9-8 1500.0 0.0 307876 ADAMS CLERK 7788 1987-5-23 1100.0 NULL 207900 JAMES CLERK 7698 1981-12-3 950.0 NULL 307902 FORD ANALYST 7566 1981-12-3 3000.0 NULL 207934 MILLER CLERK 7782 1982-1-23 1300.0 NULL 10Time taken: 0.138 seconds, Fetched: 14 row(s)#复制表中的一些字段hive> create table emp3 as select empno,ename from emp;Query ID = hadoop_20180616171313_fbc318e8-bc70-4b63-84fa-3acd94e4ec3eTotal jobs = 3...OKTime taken: 16.143 secondshive> select * from emp3;OK7369 SMITH7499 ALLEN7521 WARD7566 JONES7654 MARTIN7698 BLAKE7782 CLARK7788 SCOTT7839 KING7844 TURNER7876 ADAMS7900 JAMES7902 FORD7934 MILLERTime taken: 0.159 seconds, Fetched: 14 row(s)
1.5.Create Table Like# Create Table Like 只拷贝表结构hive> create table emp_like like emp;OKTime taken: 0.195 secondshive> select * from emp_like;OKTime taken: 0.131 seconds
2.展示表 (Show Table与Show Create Table)
- 下面是官网上为我们列出的语法:
SHOW TABLES [IN database_name] ['identifier_with_wildcards'];SHOW CREATE TABLE ([db_name.]table_name|view_name);
hive> show tables;OKempemp2emp3emp_likehive_testTime taken: 0.042 seconds, Fetched: 5 row(s)hive> show tables 'emp*';OKempemp2emp3emp_likeTime taken: 0.053 seconds, Fetched: 4 row(s)hive> show create table emp;OKCREATE TABLE `emp`( `empno` int, `ename` string, `job` string, `mgr` int, `hiredate` string, `salary` double, `comm` double, `deptno` int)ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'LOCATION 'hdfs://192.168.6.217:9000/user/hive/warehouse/emp'TBLPROPERTIES ( 'COLUMN_STATS_ACCURATE'='true', 'numFiles'='1', 'numRows'='0', 'rawDataSize'='0', 'totalSize'='657', 'transient_lastDdlTime'='1529140756')Time taken: 0.245 seconds, Fetched: 24 row(s)
3.查询表信息(Describe Table)
- 下面是官网上为我们列出的语法:
DESCRIBE [EXTENDED|FORMATTED] table_name[.col_name ( [.field_name] | [.'$elem$'] | [.'$key$'] | [.'$value$'] )* ]; -- (Note: Hive 1.x.x and 0.x.x only. See "Hive 2.0+: New Syntax" below)
desc formatted table_name; 比较常用
hive> desc emp;OKempno int ename string job string mgr int hiredate string salary double comm double deptno int Time taken: 0.213 seconds, Fetched: 8 row(s)hive> desc formatted emp;OK# col_name data_type comment empno int ename string job string mgr int hiredate string salary double comm double deptno int # Detailed Table Information Database: default Owner: hadoop CreateTime: Sat Jun 16 17:13:05 CST 2018 LastAccessTime: UNKNOWN Protect Mode: None Retention: 0 Location: hdfs://192.168.6.217:9000/user/hive/warehouse/emp Table Type: MANAGED_TABLE Table Parameters: COLUMN_STATS_ACCURATE true numFiles 1 numRows 0 rawDataSize 0 totalSize 657 transient_lastDdlTime 1529140756 # Storage Information SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe InputFormat: org.apache.hadoop.mapred.TextInputFormat OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Compressed: No Num Buckets: -1 Bucket Columns: [] Sort Columns: [] Storage Desc Params: field.delim \t serialization.format \t Time taken: 0.214 seconds, Fetched: 39 row(s)hive> desc EXTENDED emp;OKempno int ename string job string mgr int hiredate string salary double comm double deptno int Detailed Table Information Table(tableName:emp, dbName:default, owner:hadoop, createTime:1529140385, lastAccessTime:0, retention:0, sd:StorageDescriptor(cols:[FieldSchema(name:empno, type:int, comment:null), FieldSchema(name:ename, type:string, comment:null), FieldSchema(name:job, type:string, comment:null), FieldSchema(name:mgr, type:int, comment:null), FieldSchema(name:hiredate, type:string, comment:null), FieldSchema(name:salary, type:double, comment:null), FieldSchema(name:comm, type:double, comment:null), FieldSchema(name:deptno, type:int, comment:null)], location:hdfs://192.168.6.217:9000/user/hive/warehouse/emp, inputFormat:org.apache.hadoop.mapred.TextInputFormat, outputFormat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat, compressed:false, numBuckets:-1, serdeInfo:SerDeInfo(name:null, serializationLib:org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, parameters:{serialization.format= , field.delim=Time taken: 0.21 seconds, Fetched: 10 row(s)
4.修改表(Alter Table)
- 下面是官网上为我们列出的语法:
ALTER TABLE table_name RENAME TO new_table_name;ALTER TABLE table_name SET TBLPROPERTIES table_properties;table_properties: : (property_name = property_value, property_name = property_value, ... )ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comment);...
hive> alter table hive_test rename to new_hive_test;OKTime taken: 0.262 secondshive> ALTER TABLE table_name SET TBLPROPERTIES ("creator"="ruoze", "date"="2018-06-16");FAILED: SemanticException [Error 10001]: Table not found default.table_namehive> ALTER TABLE new_hive_test SET TBLPROPERTIES ("creator"="ruoze", "date"="2018-06-16");OKTime taken: 0.246 secondshive> ALTER TABLE new_hive_test SET TBLPROPERTIES ('comment' = 'This is new_hive_test Table');# 再次查看表hive> desc formatted new_hive_test;OK# col_name data_type comment id int this is id name string this is name # Detailed Table Information Database: default Owner: hadoop CreateTime: Sat Jun 16 17:09:19 CST 2018 LastAccessTime: UNKNOWN Protect Mode: None Retention: 0 Location: hdfs://192.168.6.217:9000/user/hive/warehouse/new_hive_test Table Type: MANAGED_TABLE Table Parameters: COLUMN_STATS_ACCURATE false comment This is new_hive_test Table creator ruoze date 2018-06-16 last_modified_by hadoop last_modified_time 1529143021 numFiles 0 numRows -1 rawDataSize -1 totalSize 0 transient_lastDdlTime 1529143021 # Storage Information SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe InputFormat: org.apache.hadoop.mapred.TextInputFormat OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Compressed: No Num Buckets: -1 Bucket Columns: [] Sort Columns: [] Storage Desc Params: field.delim \t serialization.format \t Time taken: 0.188 seconds, Fetched: 38 row(s)
5.截断表(Truncate Table)
- 下面是官网上为我们列出的语法:
TRUNCATE TABLE table_name [PARTITION partition_spec];partition_spec:: (partition_column = partition_col_value, partition_column = partition_col_value, ...)
Truncate Table用处不多
hive> select * from emp3;OK7369 SMITH7499 ALLEN7521 WARD7566 JONES7654 MARTIN7698 BLAKE7782 CLARK7788 SCOTT7839 KING7844 TURNER7876 ADAMS7900 JAMES7902 FORD7934 MILLERTime taken: 0.148 seconds, Fetched: 14 row(s)hive> truncate table emp3;OKTime taken: 0.241 secondshive> select * from emp3;OKTime taken: 0.12 seconds
6.删除表(Drop Table)
- 下面是官网上为我们列出的语法:
DROP TABLE [IF EXISTS] table_name [PURGE]; -- (Note: PURGE available in Hive 0.14.0 and later)
1.指定PURGE后,数据不会放到回收箱,会直接删除。
2.DROP TABLE删除此表的元数据和数据。如果配置了垃圾箱(并且未指定PURGE),则实际将数据移至.Trash / Current目录。元数据完全丢失。
3.删除EXTERNAL表时,表中的数据不会从文件系统中删除。hive> drop table emp3;OKTime taken: 0.866 secondshive> show tables;OKempemp2emp_likenew_hive_testTime taken: 0.036 seconds, Fetched: 4 row(s)
参考:https://blog.csdn.net/yu0_zhang0/article/details/78976021
关于表的DDL操作还有很多,有关分区表的操作还没详解 后面会单独写一篇分区表